#include "lexer.h" using namespace Lex; void Tree::clear() { nodes.clear(); root = 0; last = 0; node_num = 0; } // Type of lexical token std::string Tree::GetType() { if (node_num > 0 && nodes[root].child_names.size() == 1) return nodes[root].child_names[0]; return ""; } bool Tree::Valid(const std::string& Top) const { // A token is non empty if (node_num == 0) return false; // Start symbol on top auto rootNode{nodes.find(root)}; if (rootNode == nodes.end()) throw std::runtime_error("Node not found: "s + std::to_string(root)); if (rootNode->second.name != Top) return false; // All nodes filled (implies all leaves are terminal) for (const auto& [index, node]: nodes) { if (node.childs.size() < node.child_names.size()) return false; // node not filled } return true; } bool Tree::AddFirstNode(char c, const BNF& bnf, const std::map>& reverseBNF) { node_num ++; root = node_num; last = node_num; std::string node_name(1, char(c)); auto reverseRule{reverseBNF.find(node_name)}; if (reverseRule == reverseBNF.end()) throw std::runtime_error("Reverse rule not found for "s + node_name); auto rule{bnf.find(node_name)}; if (rule != bnf.end()) { // multiple variants! throw std::runtime_error("BNF rule for terminal symbol "s + node_name + " found."s); } nodes.emplace(root, TreeNode{0, std::vector{}, std::vector{}, node_name}); return true; } std::vector Tree::getParentTreeNode(const BNF& bnf, const std::map>& reverseBNF) { std::vector result; // default: empty auto& root_name {nodes[root].name}; auto bnfParents {reverseBNF.find(root_name)}; if (bnfParents == reverseBNF.end()) return result; for (const auto& parent_node_name : bnfParents->second) { auto lists {bnf.at(parent_node_name)}; for (const auto& list : lists) { if (list.size() > 0 && list[0] == root_name) { TreeNode node{0, std::vector{root}, list, parent_node_name}; result.push_back(node); } } } return result; } index_t Tree::GetLast() { index_t result {root}; while(result != 0 && nodes[result].childs.size() >= 2) { result = nodes[result].childs[nodes[result].childs.size() - 1]; } return result; } void Tree::AddRootNode(const TreeNode& newRootNode) { node_num++; nodes[node_num] = newRootNode; root = node_num; last = node_num; } void Tree::RemoveRootNode() { root = nodes[root].childs[0]; nodes.erase(node_num); node_num--; last = GetLast(); } // Path from leaf to root std::vector Tree::GetPath(std::string a, std::string b, const BNF& bnf, const std::map>& reverseBNF) { std::vector result; while (a != b) { auto parents {reverseBNF.find(a)}; if (parents == reverseBNF.end()) return {}; bool hit{false}; for (const auto& parent : parents->second) { for (const auto& list : bnf.at(parent)) { if (list.size() > 0 && list[0] == a) { if (!hit) { result.push_back(a); a = parent; hit = true; } else throw std::runtime_error("Double match for "s + parent + "/"s + a); } } } } if (a == b) { result.push_back(a); } return result; } index_t Tree::AddNode(const std::string& name, const std::string& child_name, index_t parent_index, const BNF& bnf, const std::map>& reverseBNF) { TreeNode& parent {nodes[parent_index]}; node_num++; index_t index = node_num; parent.childs.push_back(index); std::vector child_names; auto rule {bnf.find(name)}; if (rule != bnf.end()) { for (auto& list : rule->second) { if (list.size() > 0 && list[0] == child_name) child_names = list; } } nodes.emplace(index, TreeNode{parent_index, {}, child_names, name}); //root stays last = GetLast(); return index; } void Tree::AddPath(const std::vector& path, index_t current_index, const BNF& bnf, const std::map>& reverseBNF) { for (int i = path.size() - 1; i >= 0; i--) { std::string child_name; if (i > 0) child_name = path[i - 1]; current_index = AddNode(path[i], child_name, current_index, bnf, reverseBNF); } } // try to add character to tree bool Tree::Add(char c, const BNF& bnf, const std::map>& reverseBNF) { if (nodes.empty()) { // first node return AddFirstNode(c, bnf, reverseBNF); } else { // at least one character is already present // Traverse tree until partially filled node found // or new node can be added index_t current_index{last}; while (current_index != 0) { TreeNode& node {nodes[current_index]}; if (node.childs.size() < node.child_names.size()) { // partially filled node std::vector list = GetPath(std::string(1, c), node.child_names[node.childs.size()], bnf, reverseBNF); if (list.size() > 0) { AddPath(list, current_index, bnf, reverseBNF); return true; } else { return false; // The path a->b is not available via bnf } } current_index = node.parent; } // Add node at root std::vector parent_nodes = getParentTreeNode(bnf, reverseBNF); if (parent_nodes.size() == 0) throw std::runtime_error("Couldn't add new parent node."); for (const auto &i : parent_nodes) { AddRootNode(i); if (Add(c, bnf, reverseBNF)) return true; RemoveRootNode(); } } return false; } // add path to start symbol void Tree::Resolve(const BNF& bnf, const std::map>& reverseBNF) { if (nodes.empty()) // only handle non-empty trees return; while (true) { std::string& old_root_name { nodes[root].name }; // current root node name auto parents {reverseBNF.find(old_root_name)}; if (parents != reverseBNF.end()) { // parents in bnf available bool hit{false}; for (auto& parent : parents->second) { for (const auto& list : bnf.at(parent)) { if (list.size() == 1 && list[0] == old_root_name) { if (!hit) { const std::string& new_root_name {parent}; // Add new TreeNode in the direction to root: // New root with 1 child (old root) nodes.emplace(++node_num, TreeNode{0, // parent std::vector{root}, // child indices std::vector{old_root_name}, // child names new_root_name // name }); nodes[root].parent = node_num; root = node_num; // this->last stays hit = true; } else throw std::runtime_error("Error: Multiple resolve nodes for "s + old_root_name); } } } if (!hit) break; } else break; } } void Lexer::FinalizeTree(Tree& tree, std::string& token, std::vector& result) { tree.Resolve(bnf, ReverseBNF); if (tree.Valid(Top)) { result.emplace_back(Token{tree.GetType(), token, Location{location.line, location.column - token.size()}}); token.clear(); } tree.clear(); } Lexer::Lexer(const BNF& bnf, const std::string& Top): bnf(bnf), Top(Top), ReverseBNF{Reverse(bnf)} { } std::vector Lexer::Lex(const std::string& s) { location = {1, 0}; std::vector result; std::string token; std::string Whitespace{"\t \n\r"}; Tree tree; for (size_t pos{0}; pos < s.size(); pos++) { char c{s[pos]}; if (c == '\n') { location.column = 0; location.line++; } else if (std::isprint(c)) { location.column++; } //std::cout << "Char: |" << c << "|" << std::endl; if (Whitespace.find(c) != std::string::npos) { // found whitespace character // evaluate token up to now and skip whitespace FinalizeTree(tree, token, result); } else { // no whitespace: try to add to tree if (!tree.Add(c, bnf, ReverseBNF)) { FinalizeTree(tree, token, result); if (!tree.Add(c, bnf, ReverseBNF)) throw std::runtime_error("Parse error"); } token.push_back(c); } } // Final evaluation of last token FinalizeTree(tree, token, result); return result; }