1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
|
//
// Reichwein.IT Unicode Library
//
// Optimized conversion functions for UTF input and output
//
#pragma once
#include "unicode/endian.h"
#include "unicode/iso.h"
#include "unicode/predicate.h"
#include "unicode/types.h"
#include "unicode/type_traits.h"
#include "unicode/utf.h"
#include <algorithm>
#include <array>
#include <cstdint>
#include <iterator>
#include <memory>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
namespace unicode {
// Helper function: Item distance of specified iterators
// std::distance doesn't work here: it is based on "output" distance of iterators
template<class Iterator>
inline size_t input_distance(const Iterator& it1, const Iterator& it2)
{
return it2 - it1;
}
// Helper function: Distance of specified iterator content data in bytes
template<class Iterator>
inline size_t input_distance_bytes(const Iterator& it1, const Iterator& it2)
{
return input_distance(it1, it2) * sizeof(typename Iterator::value_type);
}
// Optimizations following:
static const size_t accu_size {sizeof(size_t)};
template<int value_size>
struct ConvertInputOptimizer {};
template<> struct ConvertInputOptimizer<1>
{
static const uint32_t ascii_mask { 0x80808080 };
};
template<> struct ConvertInputOptimizer<2>
{
static const uint32_t ascii_mask { 0xFF80FF80 };
};
template<> struct ConvertInputOptimizer<4>
{
static const uint32_t ascii_mask { 0xFFFFFF80 };
};
template<int AccuSize, class ConvertInputOptimizer>
struct ArchitectureOptimizer {};
// On 32 bit architecture, calculate with 32 bit accumulator value
// (hoping the compiler will put it into a 32 bit register)
template<class ConvertInputOptimizer>
struct ArchitectureOptimizer<4, ConvertInputOptimizer>
{
typedef ConvertInputOptimizer input_optimizer;
typedef uint32_t accu_type;
static const accu_type addr_mask {accu_size - 1};
static const accu_type ascii_mask { (accu_type)input_optimizer::ascii_mask };
static const accu_type ascii_value { 0ULL };
template<typename input_value_type, class output_string_type>
inline static void append(const input_value_type* addr, output_string_type& s)
{
if constexpr(sizeof(input_value_type) == sizeof(typename output_string_type::value_type)) {
s.append(reinterpret_cast<const typename output_string_type::value_type*>(addr), accu_size / sizeof(input_value_type));
} else if constexpr(is_utf_8_v<input_value_type>) {
s.append({static_cast<typename output_string_type::value_type>(addr[0]),
static_cast<typename output_string_type::value_type>(addr[1]),
static_cast<typename output_string_type::value_type>(addr[2]),
static_cast<typename output_string_type::value_type>(addr[3])});
} else if constexpr(is_utf_16_v<input_value_type>) {
s.append({static_cast<typename output_string_type::value_type>(addr[0]),
static_cast<typename output_string_type::value_type>(addr[1])});
} else if constexpr(is_utf_32_v<input_value_type>) {
s.append({static_cast<typename output_string_type::value_type>(addr[0])});
}
}
};
// On 64 bit architecture, calculate with 64 bit accumulator value
// (hoping the compiler will put it into a 64 bit register)
template<class ConvertInputOptimizer>
struct ArchitectureOptimizer<8, ConvertInputOptimizer>
{
typedef ConvertInputOptimizer input_optimizer;
typedef uint64_t accu_type;
static const accu_type addr_mask {accu_size - 1};
static const accu_type ascii_mask { ((accu_type)input_optimizer::ascii_mask) << 32 | (accu_type)input_optimizer::ascii_mask };
static const accu_type ascii_value { 0ULL };
template<typename input_value_type, class output_string_type>
inline static void append(const input_value_type* addr, output_string_type& s)
{
if constexpr(sizeof(input_value_type) == sizeof(typename output_string_type::value_type)) {
s.append(reinterpret_cast<const typename output_string_type::value_type*>(addr), accu_size / sizeof(input_value_type));
} else if constexpr(is_utf_8_v<input_value_type>) {
s.append({static_cast<typename output_string_type::value_type>(addr[0]),
static_cast<typename output_string_type::value_type>(addr[1]),
static_cast<typename output_string_type::value_type>(addr[2]),
static_cast<typename output_string_type::value_type>(addr[3]),
static_cast<typename output_string_type::value_type>(addr[4]),
static_cast<typename output_string_type::value_type>(addr[5]),
static_cast<typename output_string_type::value_type>(addr[6]),
static_cast<typename output_string_type::value_type>(addr[7])});
} else if constexpr(is_utf_16_v<input_value_type>) {
s.append({static_cast<typename output_string_type::value_type>(addr[0]),
static_cast<typename output_string_type::value_type>(addr[1]),
static_cast<typename output_string_type::value_type>(addr[2]),
static_cast<typename output_string_type::value_type>(addr[3])});
} else if constexpr(is_utf_32_v<input_value_type>) {
s.append({static_cast<typename output_string_type::value_type>(addr[0]),
static_cast<typename output_string_type::value_type>(addr[1])});
}
}
}; // class ArchitectureOptimizer
// Optimize for the case of all ASCII (7-bit) data in a accu size row
// From and To are Encodings
template<typename From, typename To, std::enable_if_t<is_encoding_v<From> && is_encoding_v<To>, bool> = true>
typename To::string_type convert_optimized(const typename From::string_type& s)
{
typename To::string_type result;
typedef ConvertInputOptimizer<sizeof(typename From::value_type)> input_optimizer;
typedef ArchitectureOptimizer<accu_size, input_optimizer> arch_optimizer;
auto begin{From::begin(s)};
auto end{From::end(s)};
auto back_inserter{To::back_inserter(result)};
auto addr{reinterpret_cast<const typename arch_optimizer::accu_type*>(&s.data()[s.size() - input_distance(begin, end)])};
while (input_distance_bytes(begin, end) >= accu_size) {
if (((uintptr_t)(void*)addr & arch_optimizer::addr_mask) == 0) {
while (input_distance_bytes(begin, end) >= accu_size) {
typename arch_optimizer::accu_type data{*addr};
if ((data & arch_optimizer::ascii_mask) == arch_optimizer::ascii_value)
#if __cplusplus >= 202002L
[[likely]]
#endif
{
arch_optimizer::template append(reinterpret_cast<const typename From::value_type*>(addr), result);
begin += accu_size / sizeof(typename From::value_type);
++addr;
} else {
// just advance one code unit for now and break to trigger unoptimized
// version until next accu boundary
back_inserter = *begin;
++begin;
break;
}
}
}
// keep up after unaligned Non-ASCII code points
while (begin != end && (uintptr_t)(void*)(addr = reinterpret_cast<const typename arch_optimizer::accu_type*>(&s.data()[s.size() - input_distance(begin, end)])) & arch_optimizer::addr_mask) {
back_inserter = *begin;
++begin;
}
}
// remainder < 8 bytes
while (begin != end) {
back_inserter = *begin;
++begin;
}
return result;
}
template<size_t bits_to_compare = 32, typename To, typename std::enable_if_t<is_utf_8_v<To>, bool> = true>
inline void append_utf(std::basic_string<To>& result, const char32_t& value)
{
using From = char32_t;
if (bits_to_compare <= 7 || value < 0x80) { // 1 byte
result.push_back(static_cast<To>(value));
} else if (bits_to_compare <= 11 || value < 0x800) { // 2 bytes
result.append({utf8_byte_n_of_m<0,2,From,To>(value), utf8_byte_n_of_m<1,2,From,To>(value)});
} else if (bits_to_compare <= 16 || value < 0x10000) { // 3 bytes
result.append({utf8_byte_n_of_m<0,3,From,To>(value), utf8_byte_n_of_m<1,3,From,To>(value), utf8_byte_n_of_m<2,3,From,To>(value)});
} else { // 4 bytes
// expect value to be already valid Unicode values
result.append({utf8_byte_n_of_m<0,4,From,To>(value), utf8_byte_n_of_m<1,4,From,To>(value), utf8_byte_n_of_m<2,4,From,To>(value), utf8_byte_n_of_m<3,4,From,To>(value)});
}
}
template<size_t bits_to_compare = 32, typename To, typename std::enable_if_t<is_utf_16_v<To>, bool> = true>
inline void append_utf(std::basic_string<To>& result, const char32_t& value)
{
if (bits_to_compare <= 16 || value <= 0xFFFF) { // expect value to be already valid Unicode values
result.push_back(static_cast<To>(value));
} else {
char32_t value_reduced{value - 0x10000};
result.append({static_cast<To>((value_reduced >> 10) + 0xD800), static_cast<To>((value_reduced & 0x3FF) + 0xDC00)});
}
}
template<size_t bits_to_compare = 32, typename To, typename std::enable_if_t<is_utf_32_v<To>, bool> = true>
inline void append_utf(std::basic_string<To>& result, const char32_t& value)
{
// expect value to be already valid Unicode values (checked in input iterator)
result.push_back(static_cast<To>(value));
}
// Little Endian optimized version for UTF-8
// In block_mode, at least 4 bytes are in accu. On first call, even 8.
// otherwise, at least one code unit is in accu
template<typename From, typename To, bool block_mode = true, typename std::enable_if_t<is_utf_8_v<From>, bool> = true>
inline static void append_accu(std::basic_string<To>& result, uint64_t& accu, int& bytes_in_accu)
{
if (block_mode && bytes_in_accu == 8 && (accu & 0x8080808080808080) == 0)
#if __cplusplus >= 202002L
[[likely]]
#endif
{
result.append({
static_cast<To>(accu & 0x7F),
static_cast<To>((accu >> 8) & 0x7F),
static_cast<To>((accu >> 16) & 0x7F),
static_cast<To>((accu >> 24) & 0x7F),
static_cast<To>((accu >> 32) & 0x7F),
static_cast<To>((accu >> 40) & 0x7F),
static_cast<To>((accu >> 48) & 0x7F),
static_cast<To>((accu >> 56) & 0x7F),
});
accu = 0;
bytes_in_accu = 0;
} else if ((accu & 0x80) == 0) { // 1 byte sequence
append_utf<7>(result, static_cast<char32_t>(accu & 0x7F));
accu >>= 8;
bytes_in_accu -= 1;
} else if ((block_mode || bytes_in_accu >= 2) && (accu & 0xC0E0) == 0x80C0) { // 2 byte sequence
char32_t value {static_cast<char32_t>(((accu & 0x1F) << 6) | ((accu >> 8) & 0x3f))};
accu >>= 16;
bytes_in_accu -= 2;
if (is_valid_unicode<11>(value))
append_utf<11>(result, value);
else
#if __cplusplus >= 202002L
[[unlikely]]
#endif
throw std::invalid_argument("Invalid Unicode character in 2 byte UTF-8 sequence");
} else if ((block_mode || bytes_in_accu >= 3) && (accu & 0xC0C0F0) == 0x8080E0) { // 3 byte sequence
char32_t value {static_cast<char32_t>(((accu & 0x0F) << 12) | ((accu >> 2) & 0x0FC0) | ((accu >> 16) & 0x3f))};
accu >>= 24;
bytes_in_accu -= 3;
if (is_valid_unicode<16>(value))
append_utf<16>(result, value);
else
#if __cplusplus >= 202002L
[[unlikely]]
#endif
throw std::invalid_argument("Invalid Unicode character in 3 byte UTF-8 sequence");
} else if ((block_mode || bytes_in_accu >= 4) && (accu & 0xC0C0C0F8) == 0x808080F0) { // 4 byte sequence
char32_t value {static_cast<char32_t>(((accu & 0x07) << 18) | ((accu << 4) & 0x3f000) | ((accu >> 10) & 0xFC0) | ((accu >> 24) & 0x3f))};
accu >>= 32;
bytes_in_accu -= 4;
if (is_valid_unicode<21>(value))
append_utf(result, value);
else
#if __cplusplus >= 202002L
[[unlikely]]
#endif
throw std::invalid_argument("Invalid Unicode character in 4 byte UTF-8 sequence");
} else
#if __cplusplus >= 202002L
[[unlikely]]
#endif
throw std::invalid_argument("Invalid UTF-8 byte sequence");
}
// Little Endian optimized version
template<typename From, typename To, std::enable_if_t<is_encoding_v<From> && is_encoding_v<To>, bool> = true>
typename To::string_type convert_optimized_utf(const typename From::string_type& s)
{
typename To::string_type result;
uint64_t accu{};
int bytes_in_accu{};
size_t s_index{};
size_t s_size{s.size()};
while (s_index + 8 / sizeof(typename From::value_type) <= s_size) {
// read input
// assume: bytes_in_accu < 8
accu |= (*reinterpret_cast<const uint64_t*>(&(s.data()[s_index]))) << (bytes_in_accu * 8);
s_index += (8 - bytes_in_accu) / sizeof(typename From::value_type);
bytes_in_accu = 8;
while (bytes_in_accu >= 4) {
append_accu<typename From::value_type, typename To::value_type, true>(result, accu, bytes_in_accu);
}
}
// 0..3 bytes left in accu
// 0..7 bytes left in s
while (s_index < s_size || bytes_in_accu > 0) {
while (s_index < s_size && bytes_in_accu < 8) {
accu |= static_cast<uint64_t>(*reinterpret_cast<const uint8_t*>(&(s.data()[s_index]))) << (bytes_in_accu * 8);
++s_index;
bytes_in_accu += sizeof(typename From::value_type);
}
append_accu<typename From::value_type, typename To::value_type, false>(result, accu, bytes_in_accu);
}
return result;
}
} // namespace unicode
|