1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
//
// Reichwein.IT Unicode Library
//
// Functions for support of UTF encodings
//
// Implementation of utf_iterator and utf_back_insert_iterator templates for
// validation and conversion via STL compatible iteration over standard
// containers
//
#pragma once
#include "utf_fwd.h"
#include "type_traits.h"
#include <list>
#include <string>
#include <stdexcept>
namespace unicode::detail {
using namespace std::string_literals;
template<size_t sequence_length, typename value_type>
inline bool is_utf8_leading_byte(value_type byte) noexcept
{
static_assert(sequence_length <= 4);
if constexpr(sequence_length == 1) {
return !(byte & 0x80);
} else {
return (byte & static_cast<value_type>(0xFF << (7 - sequence_length))) == static_cast<value_type>(0xFF << (8 - sequence_length));
}
}
template<typename value_type>
inline bool is_utf8_followup_byte(value_type b) noexcept
{
return (b & 0b11000000) == 0b10000000;
}
template<typename value_type, typename... Tbytes>
inline bool is_utf8_sequence(value_type byte0, Tbytes... bytes) noexcept
{
constexpr auto sequence_length{sizeof...(Tbytes) + 1};
static_assert(sequence_length <= 4, "UTF-8 sequences of 1 through 4 code units are supported");
return is_utf8_leading_byte<sequence_length>(byte0) &&
(... && is_utf8_followup_byte(bytes)); // left fold for linear evaluation from left to right
}
template<typename T, typename std::enable_if_t<is_utf_8_v<T>, bool> = true>
inline bool validate_utf(const std::basic_string<T>& s)
{
size_t i{};
size_t size{s.size()};
while (i < size) {
if (is_utf8_sequence(s[i])) {
i++;
} else if ((i + 1 < size) && is_utf8_sequence(s[i], s[i + 1])) {
i += 2;
} else if ((i + 2 < size) && is_utf8_sequence(s[i], s[i + 1], s[i + 2])) {
if (((s[i] & 0xF) == 0xD) && ((s[i + 1] & 0x20) == 0x20))
return false; // Reserved for UTF-16 surrogates: 0xD800..0xDFFF
i += 3;
} else if ((i + 3 < size) && is_utf8_sequence(s[i], s[i + 1], s[i + 2], s[i + 3])) {
if ((((s[i] & 7) << 2) | ((s[i + 1] >> 4) & 3)) >= 0x11)
return false; // Unicode too big above 0x10FFFF
i += 4;
} else
#if __cplusplus >= 202002L
[[unlikely]]
#endif
return false;
}
return true;
}
template<typename value_type, typename... Twords>
inline bool is_utf16_sequence(value_type word0, Twords... words) noexcept
{
constexpr auto sequence_length{sizeof...(Twords) + 1};
static_assert(sequence_length <= 2, "UTF-16 sequences of only 1 or 2 code units are supported");
if constexpr(sequence_length == 1) {
return is_valid_unicode(word0);
} else {
char16_t unit0 {static_cast<char16_t>(word0)};
char16_t unit1 {static_cast<char16_t>((words, ...))};
return (unit0 & 0xFC00) == 0xD800 && (unit1 & 0xFC00) == 0xDC00;
}
}
template<typename T, typename std::enable_if_t<is_utf_16_v<T>, bool> = true>
inline bool validate_utf(const std::basic_string<T>& s)
{
size_t i{};
size_t size{s.size()};
while (i < size) {
if (is_utf16_sequence(s[i])) {
i++;
} else if ((i + 1 < size) && is_utf16_sequence(s[i], s[i + 1])) {
i += 2;
} else
#if __cplusplus >= 202002L
[[unlikely]]
#endif
return false;
}
return true;
}
template<typename T, typename std::enable_if_t<is_utf_32_v<T>, bool> = true>
inline bool validate_utf(const std::basic_string<T>& s)
{
for (auto i: s)
if (!is_valid_unicode(i))
return false;
return true;
}
template<size_t sequence_length, typename value_type>
inline char32_t decode_utf8_leading_byte(value_type b) noexcept
{
return static_cast<char32_t>(b & (0b1111111 >> sequence_length)) << ((sequence_length - 1) * 6);
}
template<typename value_type>
inline char32_t decode_utf8_followup_byte(value_type b) noexcept
{
return static_cast<char32_t>(b & 0b00111111);
}
template<typename value_type, typename... Targs>
inline char32_t decode_utf8_followup_byte(value_type b, Targs... bytes) noexcept
{
return decode_utf8_followup_byte(b) << (6 * sizeof...(Targs)) | decode_utf8_followup_byte(bytes...);
}
template<typename value_type, typename... Targs>
inline char32_t decode_utf8_sequence(value_type b, Targs... bytes) noexcept
{
size_t constexpr sequence_length{sizeof...(Targs) + 1};
static_assert(sequence_length <= 4);
if constexpr (sequence_length == 1)
return b;
else
return decode_utf8_leading_byte<sequence_length>(b) | decode_utf8_followup_byte(bytes...);
}
template<typename T, typename Container>
struct utf_iterator
{
static_assert(is_utf_8_v<T> || is_utf_16_v<T> || is_utf_32_v<T>);
typedef T value_type;
typedef char32_t internal_type;
typedef char32_t& reference;
typedef char32_t* pointer;
typedef size_t difference_type;
typedef std::input_iterator_tag iterator_category;
typedef Container string_type;
utf_iterator(const typename string_type::const_iterator& cbegin, const typename string_type::const_iterator& cend):
iterator(cbegin), end_iterator(cend)
{
}
utf_iterator(const utf_iterator& other) = default;
utf_iterator& operator=(const utf_iterator& other) = default;
inline size_t remaining_code_units() const noexcept
{
return std::distance(iterator, end_iterator);
}
template<size_t index>
inline value_type get_code_unit() const noexcept
{
if constexpr (std::is_same_v<Container, typename std::list<value_type>>) {
// std::list doesn't support it + n
auto it{iterator};
std::advance(it, index);
return *it;
} else {
return *(iterator + index);
}
}
template<typename... Tbytes>
inline internal_type calculate_utf8_value(Tbytes... bytes)
{
size_t constexpr sequence_length{sizeof...(Tbytes)};
static_assert(sequence_length >= 1 && sequence_length <= 4);
if (is_utf8_sequence(bytes...)) {
std::advance(iterator, sequence_length);
internal_type result{decode_utf8_sequence(bytes...)};
if (!unicode::is_valid_unicode<sequence_length * 6>(result))
#if __cplusplus >= 202002L
[[unlikely]]
#endif
throw std::invalid_argument("Invalid Unicode character: "s + std::to_string(static_cast<uint32_t>(result)));
return result;
} else {
if constexpr(sequence_length <= 3) { // template recursion break condition: UTF-8 has 1..4 code units
if (remaining_code_units() < sequence_length + 1)
#if __cplusplus >= 202002L
[[unlikely]]
#endif
throw std::invalid_argument("Bad input: Not enough bytes left for decoding UTF-8 sequence");
return calculate_utf8_value(bytes..., static_cast<utf8_t>(get_code_unit<sequence_length>()));
} else
throw std::invalid_argument("Bad UTF-8 input: Invalid 4 byte sequence");
}
}
template<class X = value_type, typename std::enable_if_t<is_utf_8_v<X>, bool> = true>
inline internal_type calculate_value()
{
return calculate_utf8_value(static_cast<utf8_t>(get_code_unit<0>()));
}
template<class X = value_type, typename std::enable_if_t<is_utf_16_v<X>, bool> = true>
inline internal_type calculate_value()
{
char16_t unit0 {static_cast<char16_t>(get_code_unit<0>())};
if (is_valid_unicode(unit0)) { // 1 unit (BMP Basic Multilingual Plane)
std::advance(iterator, 1);
return unit0;
} else {
if (remaining_code_units() < 2)
#if __cplusplus >= 202002L
[[unlikely]]
#endif
throw std::invalid_argument("Bad input: Continuation of first UTF-16 unit missing");
char16_t unit1 {static_cast<char16_t>(get_code_unit<1>())};
if ((unit0 & 0xFC00) != 0xD800 || (unit1 & 0xFC00) != 0xDC00)
#if __cplusplus >= 202002L
[[unlikely]]
#endif
throw std::invalid_argument("Bad input: 2 malformed UTF-16 surrogates");
std::advance(iterator, 2);
return (static_cast<internal_type>(unit0 & 0x03FF) << 10 | (unit1 & 0x03FF)) + 0x10000;
}
}
template<class X = value_type, typename std::enable_if_t<is_utf_32_v<X>, bool> = true>
inline internal_type calculate_value()
{
internal_type result {static_cast<internal_type>(get_code_unit<0>())};
if (!unicode::is_valid_unicode(result))
#if __cplusplus >= 202002L
[[unlikely]]
#endif
throw std::invalid_argument("Invalid Unicode character: "s + std::to_string(static_cast<uint32_t>(result)));
std::advance(iterator, 1);
return result;
}
// pre-increment
utf_iterator& operator++()
{
return *this;
}
bool operator!=(const utf_iterator& other) const
{
return std::distance(iterator, end_iterator) != std::distance(other.iterator, other.end_iterator);
}
internal_type operator*()
{
return calculate_value();
}
utf_iterator& operator+=(size_t distance)
{
std::advance(iterator, distance);
return *this;
}
size_t operator-(const utf_iterator& other) const
{
return iterator - other.iterator;
}
private:
typename string_type::const_iterator iterator;
typename string_type::const_iterator end_iterator;
};
// n is number of UTF-8 bytes in sequence
template<size_t n, typename From, typename To>
inline To utf8_byte0_of(const From& value)
{
return (value >> 6 * (n - 1)) | (0xFF << (8 - n));
}
// n is index of 6-bit groups, counting from bit 0
template<size_t n, typename From, typename To>
inline To utf8_trailing_byte(const From& value)
{
return ((value >> n * 6) & 0b111111) | 0b10000000;
}
// calculate UTF-8 sequence byte for m >= 2 bytes sequences (i.e. non-ASCII)
// assume value to be valid Unicode value for given byte position
template<size_t n, size_t m, typename From, typename To>
inline To utf8_byte_n_of_m(const From& value)
{
if constexpr (n == 0)
return utf8_byte0_of<m, From, To>(value);
else
return utf8_trailing_byte<m - n - 1, From, To>(value);
}
template<typename T, typename Container>
struct utf_back_insert_iterator
{
static_assert(is_utf_8_v<T> || is_utf_16_v<T> || is_utf_32_v<T>);
typedef T value_type;
typedef char32_t internal_type;
typedef Container string_type;
typedef utf_back_insert_iterator& reference;
typedef utf_back_insert_iterator* pointer;
typedef size_t difference_type;
typedef std::output_iterator_tag iterator_category;
utf_back_insert_iterator(string_type& s): s(s) {}
utf_back_insert_iterator& operator=(const utf_back_insert_iterator& other)
{
if (std::addressof(other.s) != std::addressof(s))
throw std::runtime_error("utf_back_insert_iterator assignment operator actually called! Iterator should not be assigned to.");
return *this;
}
// no-op
reference operator++()
{
return *this;
}
// support *x = value, together with operator=()
reference operator*()
{
return *this;
}
template<typename... Args>
inline void append(Args&&... args)
{
if constexpr (std::is_same_v<Container, typename std::basic_string<value_type>>) {
s.append({args...});
} else {
(s.emplace_back(args), ...);
}
}
template<class X = value_type, typename std::enable_if_t<is_utf_8_v<X>, bool> = true>
inline void append_utf(const internal_type& value)
{
using Y = internal_type;
if (value < 0x80) { // 1 byte
append(static_cast<value_type>(value));
} else if (value < 0x800) { // 2 bytes
append(utf8_byte_n_of_m<0,2,Y,X>(value), utf8_byte_n_of_m<1,2,Y,X>(value));
} else if (value < 0x10000) { // 3 bytes
append(utf8_byte_n_of_m<0,3,Y,X>(value), utf8_byte_n_of_m<1,3,Y,X>(value), utf8_byte_n_of_m<2,3,Y,X>(value));
} else { // 4 bytes
// expect value to be already valid Unicode values (checked in input iterator)
append(utf8_byte_n_of_m<0,4,Y,X>(value), utf8_byte_n_of_m<1,4,Y,X>(value), utf8_byte_n_of_m<2,4,Y,X>(value), utf8_byte_n_of_m<3,4,Y,X>(value));
}
}
template<class X = value_type, typename std::enable_if_t<is_utf_16_v<X>, bool> = true>
inline void append_utf(const internal_type& value)
{
if (value <= 0xFFFF) { // expect value to be already valid Unicode values (checked in input iterator)
append(static_cast<value_type>(value));
} else {
internal_type value_reduced{value - 0x10000};
append(static_cast<value_type>((value_reduced >> 10) + 0xD800), static_cast<value_type>((value_reduced & 0x3FF) + 0xDC00));
}
}
template<class X = value_type, typename std::enable_if_t<is_utf_32_v<X>, bool> = true>
inline void append_utf(const internal_type& value)
{
// expect value to be already valid Unicode values (checked in input iterator)
append(static_cast<value_type>(value));
}
reference operator=(const internal_type& value)
{
append_utf(value);
return *this;
}
private:
typename utf_back_insert_iterator::string_type& s;
};
} // namespace unicode::detail
namespace unicode {
// Encoding for convert() and UTF-*
template<typename InputIt, typename OutputIt>
struct UTF
{
typedef typename OutputIt::value_type value_type;
typedef typename InputIt::string_type string_type;
static InputIt begin(const typename InputIt::string_type& s)
{
return InputIt{s.cbegin(), s.cend()};
}
static InputIt end(const typename InputIt::string_type& s)
{
return InputIt{s.cend(), s.cend()};
}
static OutputIt back_inserter(typename OutputIt::string_type& s)
{
return OutputIt(s);
}
};
// Helper to get correct Encoding from char type, e.g. Encoding<typename decltype(s)::value_type>::type or Encoding_t<typename decltype(s)::value_type>
template<typename T>
struct Encoding
{
};
template<>
struct Encoding<utf8_t>
{
typedef UTF_8 type;
};
template<>
struct Encoding<char16_t>
{
typedef UTF_16 type;
};
template<>
struct Encoding<char32_t>
{
typedef UTF_32 type;
};
template<typename T>
using Encoding_t = typename Encoding<T>::type;
} // namespace unicode
|