// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used argument matchers. More // matchers can be defined by the user implementing the // MatcherInterface<T> interface if necessary. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #include <math.h> #include <algorithm> #include <iterator> #include <limits> #include <ostream> // NOLINT #include <sstream> #include <string> #include <utility> #include <vector> #include "gtest/gtest.h" #include "gmock/internal/gmock-internal-utils.h" #include "gmock/internal/gmock-port.h" #if GTEST_HAS_STD_INITIALIZER_LIST_ # include <initializer_list> // NOLINT -- must be after gtest.h #endif GTEST_DISABLE_MSC_WARNINGS_PUSH_( 4251 5046 /* class A needs to have dll-interface to be used by clients of class B */ /* Symbol involving type with internal linkage not defined */) namespace testing { // To implement a matcher Foo for type T, define: // 1. a class FooMatcherImpl that implements the // MatcherInterface<T> interface, and // 2. a factory function that creates a Matcher<T> object from a // FooMatcherImpl*. // // The two-level delegation design makes it possible to allow a user // to write "v" instead of "Eq(v)" where a Matcher is expected, which // is impossible if we pass matchers by pointers. It also eases // ownership management as Matcher objects can now be copied like // plain values. // MatchResultListener is an abstract class. Its << operator can be // used by a matcher to explain why a value matches or doesn't match. // // FIXME: add method // bool InterestedInWhy(bool result) const; // to indicate whether the listener is interested in why the match // result is 'result'. class MatchResultListener { public: // Creates a listener object with the given underlying ostream. The // listener does not own the ostream, and does not dereference it // in the constructor or destructor. explicit MatchResultListener(::std::ostream* os) : stream_(os) {} virtual ~MatchResultListener() = 0; // Makes this class abstract. // Streams x to the underlying ostream; does nothing if the ostream // is NULL. template <typename T> MatchResultListener& operator<<(const T& x) { if (stream_ != NULL) *stream_ << x; return *this; } // Returns the underlying ostream. ::std::ostream* stream() { return stream_; } // Returns true iff the listener is interested in an explanation of // the match result. A matcher's MatchAndExplain() method can use // this information to avoid generating the explanation when no one // intends to hear it. bool IsInterested() const { return stream_ != NULL; } private: ::std::ostream* const stream_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); }; inline MatchResultListener::~MatchResultListener() { } // An instance of a subclass of this knows how to describe itself as a // matcher. class MatcherDescriberInterface { public: virtual ~MatcherDescriberInterface() {} // Describes this matcher to an ostream. The function should print // a verb phrase that describes the property a value matching this // matcher should have. The subject of the verb phrase is the value // being matched. For example, the DescribeTo() method of the Gt(7) // matcher prints "is greater than 7". virtual void DescribeTo(::std::ostream* os) const = 0; // Describes the negation of this matcher to an ostream. For // example, if the description of this matcher is "is greater than // 7", the negated description could be "is not greater than 7". // You are not required to override this when implementing // MatcherInterface, but it is highly advised so that your matcher // can produce good error messages. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "not ("; DescribeTo(os); *os << ")"; } }; // The implementation of a matcher. template <typename T> class MatcherInterface : public MatcherDescriberInterface { public: // Returns true iff the matcher matches x; also explains the match // result to 'listener' if necessary (see the next paragraph), in // the form of a non-restrictive relative clause ("which ...", // "whose ...", etc) that describes x. For example, the // MatchAndExplain() method of the Pointee(...) matcher should // generate an explanation like "which points to ...". // // Implementations of MatchAndExplain() should add an explanation of // the match result *if and only if* they can provide additional // information that's not already present (or not obvious) in the // print-out of x and the matcher's description. Whether the match // succeeds is not a factor in deciding whether an explanation is // needed, as sometimes the caller needs to print a failure message // when the match succeeds (e.g. when the matcher is used inside // Not()). // // For example, a "has at least 10 elements" matcher should explain // what the actual element count is, regardless of the match result, // as it is useful information to the reader; on the other hand, an // "is empty" matcher probably only needs to explain what the actual // size is when the match fails, as it's redundant to say that the // size is 0 when the value is already known to be empty. // // You should override this method when defining a new matcher. // // It's the responsibility of the caller (Google Mock) to guarantee // that 'listener' is not NULL. This helps to simplify a matcher's // implementation when it doesn't care about the performance, as it // can talk to 'listener' without checking its validity first. // However, in order to implement dummy listeners efficiently, // listener->stream() may be NULL. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; // Inherits these methods from MatcherDescriberInterface: // virtual void DescribeTo(::std::ostream* os) const = 0; // virtual void DescribeNegationTo(::std::ostream* os) const; }; namespace internal { // Converts a MatcherInterface<T> to a MatcherInterface<const T&>. template <typename T> class MatcherInterfaceAdapter : public MatcherInterface<const T&> { public: explicit MatcherInterfaceAdapter(const MatcherInterface<T>* impl) : impl_(impl) {} virtual ~MatcherInterfaceAdapter() { delete impl_; } virtual void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { impl_->DescribeNegationTo(os); } virtual bool MatchAndExplain(const T& x, MatchResultListener* listener) const { return impl_->MatchAndExplain(x, listener); } private: const MatcherInterface<T>* const impl_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MatcherInterfaceAdapter); }; } // namespace internal // A match result listener that stores the explanation in a string. class StringMatchResultListener : public MatchResultListener { public: StringMatchResultListener() : MatchResultListener(&ss_) {} // Returns the explanation accumulated so far. std::string str() const { return ss_.str(); } // Clears the explanation accumulated so far. void Clear() { ss_.str(""); } private: ::std::stringstream ss_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); }; namespace internal { struct AnyEq { template <typename A, typename B> bool operator()(const A& a, const B& b) const { return a == b; } }; struct AnyNe { template <typename A, typename B> bool operator()(const A& a, const B& b) const { return a != b; } }; struct AnyLt { template <typename A, typename B> bool operator()(const A& a, const B& b) const { return a < b; } }; struct AnyGt { template <typename A, typename B> bool operator()(const A& a, const B& b) const { return a > b; } }; struct AnyLe { template <typename A, typename B> bool operator()(const A& a, const B& b) const { return a <= b; } }; struct AnyGe { template <typename A, typename B> bool operator()(const A& a, const B& b) const { return a >= b; } }; // A match result listener that ignores the explanation. class DummyMatchResultListener : public MatchResultListener { public: DummyMatchResultListener() : MatchResultListener(NULL) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); }; // A match result listener that forwards the explanation to a given // ostream. The difference between this and MatchResultListener is // that the former is concrete. class StreamMatchResultListener : public MatchResultListener { public: explicit StreamMatchResultListener(::std::ostream* os) : MatchResultListener(os) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); }; // An internal class for implementing Matcher<T>, which will derive // from it. We put functionalities common to all Matcher<T> // specializations here to avoid code duplication. template <typename T> class MatcherBase { public: // Returns true iff the matcher matches x; also explains the match // result to 'listener'. bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, MatchResultListener* listener) const { return impl_->MatchAndExplain(x, listener); } // Returns true iff this matcher matches x. bool Matches(GTEST_REFERENCE_TO_CONST_(T) x) const { DummyMatchResultListener dummy; return MatchAndExplain(x, &dummy); } // Describes this matcher to an ostream. void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the negation of this matcher to an ostream. void DescribeNegationTo(::std::ostream* os) const { impl_->DescribeNegationTo(os); } // Explains why x matches, or doesn't match, the matcher. void ExplainMatchResultTo(GTEST_REFERENCE_TO_CONST_(T) x, ::std::ostream* os) const { StreamMatchResultListener listener(os); MatchAndExplain(x, &listener); } // Returns the describer for this matcher object; retains ownership // of the describer, which is only guaranteed to be alive when // this matcher object is alive. const MatcherDescriberInterface* GetDescriber() const { return impl_.get(); } protected: MatcherBase() {} // Constructs a matcher from its implementation. explicit MatcherBase( const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)>* impl) : impl_(impl) {} template <typename U> explicit MatcherBase( const MatcherInterface<U>* impl, typename internal::EnableIf< !internal::IsSame<U, GTEST_REFERENCE_TO_CONST_(U)>::value>::type* = NULL) : impl_(new internal::MatcherInterfaceAdapter<U>(impl)) {} virtual ~MatcherBase() {} private: // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar // interfaces. The former dynamically allocates a chunk of memory // to hold the reference count, while the latter tracks all // references using a circular linked list without allocating // memory. It has been observed that linked_ptr performs better in // typical scenarios. However, shared_ptr can out-perform // linked_ptr when there are many more uses of the copy constructor // than the default constructor. // // If performance becomes a problem, we should see if using // shared_ptr helps. ::testing::internal::linked_ptr< const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> > impl_; }; } // namespace internal // A Matcher<T> is a copyable and IMMUTABLE (except by assignment) // object that can check whether a value of type T matches. The // implementation of Matcher<T> is just a linked_ptr to const // MatcherInterface<T>, so copying is fairly cheap. Don't inherit // from Matcher! template <typename T> class Matcher : public internal::MatcherBase<T> { public: // Constructs a null matcher. Needed for storing Matcher objects in STL // containers. A default-constructed matcher is not yet initialized. You // cannot use it until a valid value has been assigned to it. explicit Matcher() {} // NOLINT // Constructs a matcher from its implementation. explicit Matcher(const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)>* impl) : internal::MatcherBase<T>(impl) {} template <typename U> explicit Matcher(const MatcherInterface<U>* impl, typename internal::EnableIf<!internal::IsSame< U, GTEST_REFERENCE_TO_CONST_(U)>::value>::type* = NULL) : internal::MatcherBase<T>(impl) {} // Implicit constructor here allows people to write // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes Matcher(T value); // NOLINT }; // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a std::string // matcher is expected. template <> class GTEST_API_ Matcher<const std::string&> : public internal::MatcherBase<const std::string&> { public: Matcher() {} explicit Matcher(const MatcherInterface<const std::string&>* impl) : internal::MatcherBase<const std::string&>(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a std::string object. Matcher(const std::string& s); // NOLINT #if GTEST_HAS_GLOBAL_STRING // Allows the user to write str instead of Eq(str) sometimes, where // str is a ::string object. Matcher(const ::string& s); // NOLINT #endif // GTEST_HAS_GLOBAL_STRING // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; template <> class GTEST_API_ Matcher<std::string> : public internal::MatcherBase<std::string> { public: Matcher() {} explicit Matcher(const MatcherInterface<const std::string&>* impl) : internal::MatcherBase<std::string>(impl) {} explicit Matcher(const MatcherInterface<std::string>* impl) : internal::MatcherBase<std::string>(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const std::string& s); // NOLINT #if GTEST_HAS_GLOBAL_STRING // Allows the user to write str instead of Eq(str) sometimes, where // str is a ::string object. Matcher(const ::string& s); // NOLINT #endif // GTEST_HAS_GLOBAL_STRING // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; #if GTEST_HAS_GLOBAL_STRING // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a ::string // matcher is expected. template <> class GTEST_API_ Matcher<const ::string&> : public internal::MatcherBase<const ::string&> { public: Matcher() {} explicit Matcher(const MatcherInterface<const ::string&>* impl) : internal::MatcherBase<const ::string&>(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a std::string object. Matcher(const std::string& s); // NOLINT // Allows the user to write str instead of Eq(str) sometimes, where // str is a ::string object. Matcher(const ::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; template <> class GTEST_API_ Matcher< ::string> : public internal::MatcherBase< ::string> { public: Matcher() {} explicit Matcher(const MatcherInterface<const ::string&>* impl) : internal::MatcherBase< ::string>(impl) {} explicit Matcher(const MatcherInterface< ::string>* impl) : internal::MatcherBase< ::string>(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a std::string object. Matcher(const std::string& s); // NOLINT // Allows the user to write str instead of Eq(str) sometimes, where // str is a ::string object. Matcher(const ::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; #endif // GTEST_HAS_GLOBAL_STRING #if GTEST_HAS_ABSL // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a absl::string_view // matcher is expected. template <> class GTEST_API_ Matcher<const absl::string_view&> : public internal::MatcherBase<const absl::string_view&> { public: Matcher() {} explicit Matcher(const MatcherInterface<const absl::string_view&>* impl) : internal::MatcherBase<const absl::string_view&>(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a std::string object. Matcher(const std::string& s); // NOLINT #if GTEST_HAS_GLOBAL_STRING // Allows the user to write str instead of Eq(str) sometimes, where // str is a ::string object. Matcher(const ::string& s); // NOLINT #endif // GTEST_HAS_GLOBAL_STRING // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT // Allows the user to pass absl::string_views directly. Matcher(absl::string_view s); // NOLINT }; template <> class GTEST_API_ Matcher<absl::string_view> : public internal::MatcherBase<absl::string_view> { public: Matcher() {} explicit Matcher(const MatcherInterface<const absl::string_view&>* impl) : internal::MatcherBase<absl::string_view>(impl) {} explicit Matcher(const MatcherInterface<absl::string_view>* impl) : internal::MatcherBase<absl::string_view>(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a std::string object. Matcher(const std::string& s); // NOLINT #if GTEST_HAS_GLOBAL_STRING // Allows the user to write str instead of Eq(str) sometimes, where // str is a ::string object. Matcher(const ::string& s); // NOLINT #endif // GTEST_HAS_GLOBAL_STRING // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT // Allows the user to pass absl::string_views directly. Matcher(absl::string_view s); // NOLINT }; #endif // GTEST_HAS_ABSL // Prints a matcher in a human-readable format. template <typename T> std::ostream& operator<<(std::ostream& os, const Matcher<T>& matcher) { matcher.DescribeTo(&os); return os; } // The PolymorphicMatcher class template makes it easy to implement a // polymorphic matcher (i.e. a matcher that can match values of more // than one type, e.g. Eq(n) and NotNull()). // // To define a polymorphic matcher, a user should provide an Impl // class that has a DescribeTo() method and a DescribeNegationTo() // method, and define a member function (or member function template) // // bool MatchAndExplain(const Value& value, // MatchResultListener* listener) const; // // See the definition of NotNull() for a complete example. template <class Impl> class PolymorphicMatcher { public: explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} // Returns a mutable reference to the underlying matcher // implementation object. Impl& mutable_impl() { return impl_; } // Returns an immutable reference to the underlying matcher // implementation object. const Impl& impl() const { return impl_; } template <typename T> operator Matcher<T>() const { return Matcher<T>(new MonomorphicImpl<GTEST_REFERENCE_TO_CONST_(T)>(impl_)); } private: template <typename T> class MonomorphicImpl : public MatcherInterface<T> { public: explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} virtual void DescribeTo(::std::ostream* os) const { impl_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { impl_.DescribeNegationTo(os); } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return impl_.MatchAndExplain(x, listener); } private: const Impl impl_; GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); }; Impl impl_; GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher); }; // Creates a matcher from its implementation. This is easier to use // than the Matcher<T> constructor as it doesn't require you to // explicitly write the template argument, e.g. // // MakeMatcher(foo); // vs // Matcher<const string&>(foo); template <typename T> inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) { return Matcher<T>(impl); } // Creates a polymorphic matcher from its implementation. This is // easier to use than the PolymorphicMatcher<Impl> constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicMatcher(foo); // vs // PolymorphicMatcher<TypeOfFoo>(foo); template <class Impl> inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) { return PolymorphicMatcher<Impl>(impl); } // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // The MatcherCastImpl class template is a helper for implementing // MatcherCast(). We need this helper in order to partially // specialize the implementation of MatcherCast() (C++ allows // class/struct templates to be partially specialized, but not // function templates.). // This general version is used when MatcherCast()'s argument is a // polymorphic matcher (i.e. something that can be converted to a // Matcher but is not one yet; for example, Eq(value)) or a value (for // example, "hello"). template <typename T, typename M> class MatcherCastImpl { public: static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { // M can be a polymorphic matcher, in which case we want to use // its conversion operator to create Matcher<T>. Or it can be a value // that should be passed to the Matcher<T>'s constructor. // // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a // polymorphic matcher because it'll be ambiguous if T has an implicit // constructor from M (this usually happens when T has an implicit // constructor from any type). // // It won't work to unconditionally implict_cast // polymorphic_matcher_or_value to Matcher<T> because it won't trigger // a user-defined conversion from M to T if one exists (assuming M is // a value). return CastImpl( polymorphic_matcher_or_value, BooleanConstant< internal::ImplicitlyConvertible<M, Matcher<T> >::value>(), BooleanConstant< internal::ImplicitlyConvertible<M, T>::value>()); } private: template <bool Ignore> static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, BooleanConstant<true> /* convertible_to_matcher */, BooleanConstant<Ignore>) { // M is implicitly convertible to Matcher<T>, which means that either // M is a polymorphic matcher or Matcher<T> has an implicit constructor // from M. In both cases using the implicit conversion will produce a // matcher. // // Even if T has an implicit constructor from M, it won't be called because // creating Matcher<T> would require a chain of two user-defined conversions // (first to create T from M and then to create Matcher<T> from T). return polymorphic_matcher_or_value; } // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic // matcher. It's a value of a type implicitly convertible to T. Use direct // initialization to create a matcher. static Matcher<T> CastImpl( const M& value, BooleanConstant<false> /* convertible_to_matcher */, BooleanConstant<true> /* convertible_to_T */) { return Matcher<T>(ImplicitCast_<T>(value)); } // M can't be implicitly converted to either Matcher<T> or T. Attempt to use // polymorphic matcher Eq(value) in this case. // // Note that we first attempt to perform an implicit cast on the value and // only fall back to the polymorphic Eq() matcher afterwards because the // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end // which might be undefined even when Rhs is implicitly convertible to Lhs // (e.g. std::pair<const int, int> vs. std::pair<int, int>). // // We don't define this method inline as we need the declaration of Eq(). static Matcher<T> CastImpl( const M& value, BooleanConstant<false> /* convertible_to_matcher */, BooleanConstant<false> /* convertible_to_T */); }; // This more specialized version is used when MatcherCast()'s argument // is already a Matcher. This only compiles when type T can be // statically converted to type U. template <typename T, typename U> class MatcherCastImpl<T, Matcher<U> > { public: static Matcher<T> Cast(const Matcher<U>& source_matcher) { return Matcher<T>(new Impl(source_matcher)); } private: class Impl : public MatcherInterface<T> { public: explicit Impl(const Matcher<U>& source_matcher) : source_matcher_(source_matcher) {} // We delegate the matching logic to the source matcher. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { #if GTEST_LANG_CXX11 using FromType = typename std::remove_cv<typename std::remove_pointer< typename std::remove_reference<T>::type>::type>::type; using ToType = typename std::remove_cv<typename std::remove_pointer< typename std::remove_reference<U>::type>::type>::type; // Do not allow implicitly converting base*/& to derived*/&. static_assert( // Do not trigger if only one of them is a pointer. That implies a // regular conversion and not a down_cast. (std::is_pointer<typename std::remove_reference<T>::type>::value != std::is_pointer<typename std::remove_reference<U>::type>::value) || std::is_same<FromType, ToType>::value || !std::is_base_of<FromType, ToType>::value, "Can't implicitly convert from <base> to <derived>"); #endif // GTEST_LANG_CXX11 return source_matcher_.MatchAndExplain(static_cast<U>(x), listener); } virtual void DescribeTo(::std::ostream* os) const { source_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { source_matcher_.DescribeNegationTo(os); } private: const Matcher<U> source_matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; }; // This even more specialized version is used for efficiently casting // a matcher to its own type. template <typename T> class MatcherCastImpl<T, Matcher<T> > { public: static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } }; } // namespace internal // In order to be safe and clear, casting between different matcher // types is done explicitly via MatcherCast<T>(m), which takes a // matcher m and returns a Matcher<T>. It compiles only when T can be // statically converted to the argument type of m. template <typename T, typename M> inline Matcher<T> MatcherCast(const M& matcher) { return internal::MatcherCastImpl<T, M>::Cast(matcher); } // Implements SafeMatcherCast(). // // We use an intermediate class to do the actual safe casting as Nokia's // Symbian compiler cannot decide between // template <T, M> ... (M) and // template <T, U> ... (const Matcher<U>&) // for function templates but can for member function templates. template <typename T> class SafeMatcherCastImpl { public: // This overload handles polymorphic matchers and values only since // monomorphic matchers are handled by the next one. template <typename M> static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) { return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value); } // This overload handles monomorphic matchers. // // In general, if type T can be implicitly converted to type U, we can // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is // contravariant): just keep a copy of the original Matcher<U>, convert the // argument from type T to U, and then pass it to the underlying Matcher<U>. // The only exception is when U is a reference and T is not, as the // underlying Matcher<U> may be interested in the argument's address, which // is not preserved in the conversion from T to U. template <typename U> static inline Matcher<T> Cast(const Matcher<U>& matcher) { // Enforce that T can be implicitly converted to U. GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value), T_must_be_implicitly_convertible_to_U); // Enforce that we are not converting a non-reference type T to a reference // type U. GTEST_COMPILE_ASSERT_( internal::is_reference<T>::value || !internal::is_reference<U>::value, cannot_convert_non_reference_arg_to_reference); // In case both T and U are arithmetic types, enforce that the // conversion is not lossy. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; GTEST_COMPILE_ASSERT_( kTIsOther || kUIsOther || (internal::LosslessArithmeticConvertible<RawT, RawU>::value), conversion_of_arithmetic_types_must_be_lossless); return MatcherCast<T>(matcher); } }; template <typename T, typename M> inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) { return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher); } // A<T>() returns a matcher that matches any value of type T. template <typename T> Matcher<T> A(); // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // If the explanation is not empty, prints it to the ostream. inline void PrintIfNotEmpty(const std::string& explanation, ::std::ostream* os) { if (explanation != "" && os != NULL) { *os << ", " << explanation; } } // Returns true if the given type name is easy to read by a human. // This is used to decide whether printing the type of a value might // be helpful. inline bool IsReadableTypeName(const std::string& type_name) { // We consider a type name readable if it's short or doesn't contain // a template or function type. return (type_name.length() <= 20 || type_name.find_first_of("<(") == std::string::npos); } // Matches the value against the given matcher, prints the value and explains // the match result to the listener. Returns the match result. // 'listener' must not be NULL. // Value cannot be passed by const reference, because some matchers take a // non-const argument. template <typename Value, typename T> bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, MatchResultListener* listener) { if (!listener->IsInterested()) { // If the listener is not interested, we do not need to construct the // inner explanation. return matcher.Matches(value); } StringMatchResultListener inner_listener; const bool match = matcher.MatchAndExplain(value, &inner_listener); UniversalPrint(value, listener->stream()); #if GTEST_HAS_RTTI const std::string& type_name = GetTypeName<Value>(); if (IsReadableTypeName(type_name)) *listener->stream() << " (of type " << type_name << ")"; #endif PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } // An internal helper class for doing compile-time loop on a tuple's // fields. template <size_t N> class TuplePrefix { public: // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true // iff the first N fields of matcher_tuple matches the first N // fields of value_tuple, respectively. template <typename MatcherTuple, typename ValueTuple> static bool Matches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple)); } // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) // describes failures in matching the first N fields of matchers // against the first N fields of values. If there is no failure, // nothing will be streamed to os. template <typename MatcherTuple, typename ValueTuple> static void ExplainMatchFailuresTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { // First, describes failures in the first N - 1 fields. TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); // Then describes the failure (if any) in the (N - 1)-th (0-based) // field. typename tuple_element<N - 1, MatcherTuple>::type matcher = get<N - 1>(matchers); typedef typename tuple_element<N - 1, ValueTuple>::type Value; GTEST_REFERENCE_TO_CONST_(Value) value = get<N - 1>(values); StringMatchResultListener listener; if (!matcher.MatchAndExplain(value, &listener)) { // FIXME: include in the message the name of the parameter // as used in MOCK_METHOD*() when possible. *os << " Expected arg #" << N - 1 << ": "; get<N - 1>(matchers).DescribeTo(os); *os << "\n Actual: "; // We remove the reference in type Value to prevent the // universal printer from printing the address of value, which // isn't interesting to the user most of the time. The // matcher's MatchAndExplain() method handles the case when // the address is interesting. internal::UniversalPrint(value, os); PrintIfNotEmpty(listener.str(), os); *os << "\n"; } } }; // The base case. template <> class TuplePrefix<0> { public: template <typename MatcherTuple, typename ValueTuple> static bool Matches(const MatcherTuple& /* matcher_tuple */, const ValueTuple& /* value_tuple */) { return true; } template <typename MatcherTuple, typename ValueTuple> static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, const ValueTuple& /* values */, ::std::ostream* /* os */) {} }; // TupleMatches(matcher_tuple, value_tuple) returns true iff all // matchers in matcher_tuple match the corresponding fields in // value_tuple. It is a compiler error if matcher_tuple and // value_tuple have different number of fields or incompatible field // types. template <typename MatcherTuple, typename ValueTuple> bool TupleMatches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { // Makes sure that matcher_tuple and value_tuple have the same // number of fields. GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value == tuple_size<ValueTuple>::value, matcher_and_value_have_different_numbers_of_fields); return TuplePrefix<tuple_size<ValueTuple>::value>:: Matches(matcher_tuple, value_tuple); } // Describes failures in matching matchers against values. If there // is no failure, nothing will be streamed to os. template <typename MatcherTuple, typename ValueTuple> void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( matchers, values, os); } // TransformTupleValues and its helper. // // TransformTupleValuesHelper hides the internal machinery that // TransformTupleValues uses to implement a tuple traversal. template <typename Tuple, typename Func, typename OutIter> class TransformTupleValuesHelper { private: typedef ::testing::tuple_size<Tuple> TupleSize; public: // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. // Returns the final value of 'out' in case the caller needs it. static OutIter Run(Func f, const Tuple& t, OutIter out) { return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); } private: template <typename Tup, size_t kRemainingSize> struct IterateOverTuple { OutIter operator() (Func f, const Tup& t, OutIter out) const { *out++ = f(::testing::get<TupleSize::value - kRemainingSize>(t)); return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); } }; template <typename Tup> struct IterateOverTuple<Tup, 0> { OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { return out; } }; }; // Successively invokes 'f(element)' on each element of the tuple 't', // appending each result to the 'out' iterator. Returns the final value // of 'out'. template <typename Tuple, typename Func, typename OutIter> OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); } // Implements A<T>(). template <typename T> class AnyMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { public: virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) /* x */, MatchResultListener* /* listener */) const { return true; } virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } virtual void DescribeNegationTo(::std::ostream* os) const { // This is mostly for completeness' safe, as it's not very useful // to write Not(A<bool>()). However we cannot completely rule out // such a possibility, and it doesn't hurt to be prepared. *os << "never matches"; } }; // Implements _, a matcher that matches any value of any // type. This is a polymorphic matcher, so we need a template type // conversion operator to make it appearing as a Matcher<T> for any // type T. class AnythingMatcher { public: template <typename T> operator Matcher<T>() const { return A<T>(); } }; // Implements a matcher that compares a given value with a // pre-supplied value using one of the ==, <=, <, etc, operators. The // two values being compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq(5) can be // used to match an int, a short, a double, etc). Therefore we use // a template type conversion operator in the implementation. // // The following template definition assumes that the Rhs parameter is // a "bare" type (i.e. neither 'const T' nor 'T&'). template <typename D, typename Rhs, typename Op> class ComparisonBase { public: explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {} template <typename Lhs> operator Matcher<Lhs>() const { return MakeMatcher(new Impl<Lhs>(rhs_)); } private: template <typename Lhs> class Impl : public MatcherInterface<Lhs> { public: explicit Impl(const Rhs& rhs) : rhs_(rhs) {} virtual bool MatchAndExplain( Lhs lhs, MatchResultListener* /* listener */) const { return Op()(lhs, rhs_); } virtual void DescribeTo(::std::ostream* os) const { *os << D::Desc() << " "; UniversalPrint(rhs_, os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << D::NegatedDesc() << " "; UniversalPrint(rhs_, os); } private: Rhs rhs_; GTEST_DISALLOW_ASSIGN_(Impl); }; Rhs rhs_; GTEST_DISALLOW_ASSIGN_(ComparisonBase); }; template <typename Rhs> class EqMatcher : public ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq> { public: explicit EqMatcher(const Rhs& rhs) : ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq>(rhs) { } static const char* Desc() { return "is equal to"; } static const char* NegatedDesc() { return "isn't equal to"; } }; template <typename Rhs> class NeMatcher : public ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe> { public: explicit NeMatcher(const Rhs& rhs) : ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe>(rhs) { } static const char* Desc() { return "isn't equal to"; } static const char* NegatedDesc() { return "is equal to"; } }; template <typename Rhs> class LtMatcher : public ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt> { public: explicit LtMatcher(const Rhs& rhs) : ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt>(rhs) { } static const char* Desc() { return "is <"; } static const char* NegatedDesc() { return "isn't <"; } }; template <typename Rhs> class GtMatcher : public ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt> { public: explicit GtMatcher(const Rhs& rhs) : ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt>(rhs) { } static const char* Desc() { return "is >"; } static const char* NegatedDesc() { return "isn't >"; } }; template <typename Rhs> class LeMatcher : public ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe> { public: explicit LeMatcher(const Rhs& rhs) : ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe>(rhs) { } static const char* Desc() { return "is <="; } static const char* NegatedDesc() { return "isn't <="; } }; template <typename Rhs> class GeMatcher : public ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe> { public: explicit GeMatcher(const Rhs& rhs) : ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe>(rhs) { } static const char* Desc() { return "is >="; } static const char* NegatedDesc() { return "isn't >="; } }; // Implements the polymorphic IsNull() matcher, which matches any raw or smart // pointer that is NULL. class IsNullMatcher { public: template <typename Pointer> bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { #if GTEST_LANG_CXX11 return p == nullptr; #else // GTEST_LANG_CXX11 return GetRawPointer(p) == NULL; #endif // GTEST_LANG_CXX11 } void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; } }; // Implements the polymorphic NotNull() matcher, which matches any raw or smart // pointer that is not NULL. class NotNullMatcher { public: template <typename Pointer> bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { #if GTEST_LANG_CXX11 return p != nullptr; #else // GTEST_LANG_CXX11 return GetRawPointer(p) != NULL; #endif // GTEST_LANG_CXX11 } void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } }; // Ref(variable) matches any argument that is a reference to // 'variable'. This matcher is polymorphic as it can match any // super type of the type of 'variable'. // // The RefMatcher template class implements Ref(variable). It can // only be instantiated with a reference type. This prevents a user // from mistakenly using Ref(x) to match a non-reference function // argument. For example, the following will righteously cause a // compiler error: // // int n; // Matcher<int> m1 = Ref(n); // This won't compile. // Matcher<int&> m2 = Ref(n); // This will compile. template <typename T> class RefMatcher; template <typename T> class RefMatcher<T&> { // Google Mock is a generic framework and thus needs to support // mocking any function types, including those that take non-const // reference arguments. Therefore the template parameter T (and // Super below) can be instantiated to either a const type or a // non-const type. public: // RefMatcher() takes a T& instead of const T&, as we want the // compiler to catch using Ref(const_value) as a matcher for a // non-const reference. explicit RefMatcher(T& x) : object_(x) {} // NOLINT template <typename Super> operator Matcher<Super&>() const { // By passing object_ (type T&) to Impl(), which expects a Super&, // we make sure that Super is a super type of T. In particular, // this catches using Ref(const_value) as a matcher for a // non-const reference, as you cannot implicitly convert a const // reference to a non-const reference. return MakeMatcher(new Impl<Super>(object_)); } private: template <typename Super> class Impl : public MatcherInterface<Super&> { public: explicit Impl(Super& x) : object_(x) {} // NOLINT // MatchAndExplain() takes a Super& (as opposed to const Super&) // in order to match the interface MatcherInterface<Super&>. virtual bool MatchAndExplain( Super& x, MatchResultListener* listener) const { *listener << "which is located @" << static_cast<const void*>(&x); return &x == &object_; } virtual void DescribeTo(::std::ostream* os) const { *os << "references the variable "; UniversalPrinter<Super&>::Print(object_, os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "does not reference the variable "; UniversalPrinter<Super&>::Print(object_, os); } private: const Super& object_; GTEST_DISALLOW_ASSIGN_(Impl); }; T& object_; GTEST_DISALLOW_ASSIGN_(RefMatcher); }; // Polymorphic helper functions for narrow and wide string matchers. inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { return String::CaseInsensitiveCStringEquals(lhs, rhs); } inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { return String::CaseInsensitiveWideCStringEquals(lhs, rhs); } // String comparison for narrow or wide strings that can have embedded NUL // characters. template <typename StringType> bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { // Are the heads equal? if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { return false; } // Skip the equal heads. const typename StringType::value_type nul = 0; const size_t i1 = s1.find(nul), i2 = s2.find(nul); // Are we at the end of either s1 or s2? if (i1 == StringType::npos || i2 == StringType::npos) { return i1 == i2; } // Are the tails equal? return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); } // String matchers. // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. template <typename StringType> class StrEqualityMatcher { public: StrEqualityMatcher(const StringType& str, bool expect_eq, bool case_sensitive) : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} #if GTEST_HAS_ABSL bool MatchAndExplain(const absl::string_view& s, MatchResultListener* listener) const { if (s.data() == NULL) { return !expect_eq_; } // This should fail to compile if absl::string_view is used with wide // strings. const StringType& str = string(s); return MatchAndExplain(str, listener); } #endif // GTEST_HAS_ABSL // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { if (s == NULL) { return !expect_eq_; } return MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because absl::string_view has some interfering non-explicit constructors. template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); const bool eq = case_sensitive_ ? s2 == string_ : CaseInsensitiveStringEquals(s2, string_); return expect_eq_ == eq; } void DescribeTo(::std::ostream* os) const { DescribeToHelper(expect_eq_, os); } void DescribeNegationTo(::std::ostream* os) const { DescribeToHelper(!expect_eq_, os); } private: void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { *os << (expect_eq ? "is " : "isn't "); *os << "equal to "; if (!case_sensitive_) { *os << "(ignoring case) "; } UniversalPrint(string_, os); } const StringType string_; const bool expect_eq_; const bool case_sensitive_; GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); }; // Implements the polymorphic HasSubstr(substring) matcher, which // can be used as a Matcher<T> as long as T can be converted to a // string. template <typename StringType> class HasSubstrMatcher { public: explicit HasSubstrMatcher(const StringType& substring) : substring_(substring) {} #if GTEST_HAS_ABSL bool MatchAndExplain(const absl::string_view& s, MatchResultListener* listener) const { if (s.data() == NULL) { return false; } // This should fail to compile if absl::string_view is used with wide // strings. const StringType& str = string(s); return MatchAndExplain(str, listener); } #endif // GTEST_HAS_ABSL // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because absl::string_view has some interfering non-explicit constructors. template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.find(substring_) != StringType::npos; } // Describes what this matcher matches. void DescribeTo(::std::ostream* os) const { *os << "has substring "; UniversalPrint(substring_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "has no substring "; UniversalPrint(substring_, os); } private: const StringType substring_; GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); }; // Implements the polymorphic StartsWith(substring) matcher, which // can be used as a Matcher<T> as long as T can be converted to a // string. template <typename StringType> class StartsWithMatcher { public: explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { } #if GTEST_HAS_ABSL bool MatchAndExplain(const absl::string_view& s, MatchResultListener* listener) const { if (s.data() == NULL) { return false; } // This should fail to compile if absl::string_view is used with wide // strings. const StringType& str = string(s); return MatchAndExplain(str, listener); } #endif // GTEST_HAS_ABSL // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because absl::string_view has some interfering non-explicit constructors. template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= prefix_.length() && s2.substr(0, prefix_.length()) == prefix_; } void DescribeTo(::std::ostream* os) const { *os << "starts with "; UniversalPrint(prefix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't start with "; UniversalPrint(prefix_, os); } private: const StringType prefix_; GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); }; // Implements the polymorphic EndsWith(substring) matcher, which // can be used as a Matcher<T> as long as T can be converted to a // string. template <typename StringType> class EndsWithMatcher { public: explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} #if GTEST_HAS_ABSL bool MatchAndExplain(const absl::string_view& s, MatchResultListener* listener) const { if (s.data() == NULL) { return false; } // This should fail to compile if absl::string_view is used with wide // strings. const StringType& str = string(s); return MatchAndExplain(str, listener); } #endif // GTEST_HAS_ABSL // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because absl::string_view has some interfering non-explicit constructors. template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= suffix_.length() && s2.substr(s2.length() - suffix_.length()) == suffix_; } void DescribeTo(::std::ostream* os) const { *os << "ends with "; UniversalPrint(suffix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't end with "; UniversalPrint(suffix_, os); } private: const StringType suffix_; GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); }; // Implements polymorphic matchers MatchesRegex(regex) and // ContainsRegex(regex), which can be used as a Matcher<T> as long as // T can be converted to a string. class MatchesRegexMatcher { public: MatchesRegexMatcher(const RE* regex, bool full_match) : regex_(regex), full_match_(full_match) {} #if GTEST_HAS_ABSL bool MatchAndExplain(const absl::string_view& s, MatchResultListener* listener) const { return s.data() && MatchAndExplain(string(s), listener); } #endif // GTEST_HAS_ABSL // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != NULL && MatchAndExplain(std::string(s), listener); } // Matches anything that can convert to std::string. // // This is a template, not just a plain function with const std::string&, // because absl::string_view has some interfering non-explicit constructors. template <class MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const std::string& s2(s); return full_match_ ? RE::FullMatch(s2, *regex_) : RE::PartialMatch(s2, *regex_); } void DescribeTo(::std::ostream* os) const { *os << (full_match_ ? "matches" : "contains") << " regular expression "; UniversalPrinter<std::string>::Print(regex_->pattern(), os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't " << (full_match_ ? "match" : "contain") << " regular expression "; UniversalPrinter<std::string>::Print(regex_->pattern(), os); } private: const internal::linked_ptr<const RE> regex_; const bool full_match_; GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher); }; // Implements a matcher that compares the two fields of a 2-tuple // using one of the ==, <=, <, etc, operators. The two fields being // compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq() can be // used to match a tuple<int, short>, a tuple<const long&, double>, // etc). Therefore we use a template type conversion operator in the // implementation. template <typename D, typename Op> class PairMatchBase { public: template <typename T1, typename T2> operator Matcher< ::testing::tuple<T1, T2> >() const { return MakeMatcher(new Impl< ::testing::tuple<T1, T2> >); } template <typename T1, typename T2> operator Matcher<const ::testing::tuple<T1, T2>&>() const { return MakeMatcher(new Impl<const ::testing::tuple<T1, T2>&>); } private: static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT return os << D::Desc(); } template <typename Tuple> class Impl : public MatcherInterface<Tuple> { public: virtual bool MatchAndExplain( Tuple args, MatchResultListener* /* listener */) const { return Op()(::testing::get<0>(args), ::testing::get<1>(args)); } virtual void DescribeTo(::std::ostream* os) const { *os << "are " << GetDesc; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "aren't " << GetDesc; } }; }; class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { public: static const char* Desc() { return "an equal pair"; } }; class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { public: static const char* Desc() { return "an unequal pair"; } }; class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { public: static const char* Desc() { return "a pair where the first < the second"; } }; class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { public: static const char* Desc() { return "a pair where the first > the second"; } }; class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { public: static const char* Desc() { return "a pair where the first <= the second"; } }; class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { public: static const char* Desc() { return "a pair where the first >= the second"; } }; // Implements the Not(...) matcher for a particular argument type T. // We do not nest it inside the NotMatcher class template, as that // will prevent different instantiations of NotMatcher from sharing // the same NotMatcherImpl<T> class. template <typename T> class NotMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { public: explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {} virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, MatchResultListener* listener) const { return !matcher_.MatchAndExplain(x, listener); } virtual void DescribeTo(::std::ostream* os) const { matcher_.DescribeNegationTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { matcher_.DescribeTo(os); } private: const Matcher<T> matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); }; // Implements the Not(m) matcher, which matches a value that doesn't // match matcher m. template <typename InnerMatcher> class NotMatcher { public: explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} // This template type conversion operator allows Not(m) to be used // to match any type m can match. template <typename T> operator Matcher<T>() const { return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); } private: InnerMatcher matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcher); }; // Implements the AllOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the BothOfMatcher class template, as // that will prevent different instantiations of BothOfMatcher from // sharing the same BothOfMatcherImpl<T> class. template <typename T> class AllOfMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { public: explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) : matchers_(internal::move(matchers)) {} virtual void DescribeTo(::std::ostream* os) const { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") and ("; matchers_[i].DescribeTo(os); } *os << ")"; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") or ("; matchers_[i].DescribeNegationTo(os); } *os << ")"; } virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, MatchResultListener* listener) const { // If either matcher1_ or matcher2_ doesn't match x, we only need // to explain why one of them fails. std::string all_match_result; for (size_t i = 0; i < matchers_.size(); ++i) { StringMatchResultListener slistener; if (matchers_[i].MatchAndExplain(x, &slistener)) { if (all_match_result.empty()) { all_match_result = slistener.str(); } else { std::string result = slistener.str(); if (!result.empty()) { all_match_result += ", and "; all_match_result += result; } } } else { *listener << slistener.str(); return false; } } // Otherwise we need to explain why *both* of them match. *listener << all_match_result; return true; } private: const std::vector<Matcher<T> > matchers_; GTEST_DISALLOW_ASSIGN_(AllOfMatcherImpl); }; #if GTEST_LANG_CXX11 // VariadicMatcher is used for the variadic implementation of // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). // CombiningMatcher<T> is used to recursively combine the provided matchers // (of type Args...). template <template <typename T> class CombiningMatcher, typename... Args> class VariadicMatcher { public: VariadicMatcher(const Args&... matchers) // NOLINT : matchers_(matchers...) { static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); } // This template type conversion operator allows an // VariadicMatcher<Matcher1, Matcher2...> object to match any type that // all of the provided matchers (Matcher1, Matcher2, ...) can match. template <typename T> operator Matcher<T>() const { std::vector<Matcher<T> > values; CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); return Matcher<T>(new CombiningMatcher<T>(internal::move(values))); } private: template <typename T, size_t I> void CreateVariadicMatcher(std::vector<Matcher<T> >* values, std::integral_constant<size_t, I>) const { values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); } template <typename T> void CreateVariadicMatcher( std::vector<Matcher<T> >*, std::integral_constant<size_t, sizeof...(Args)>) const {} tuple<Args...> matchers_; GTEST_DISALLOW_ASSIGN_(VariadicMatcher); }; template <typename... Args> using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; #endif // GTEST_LANG_CXX11 // Used for implementing the AllOf(m_1, ..., m_n) matcher, which // matches a value that matches all of the matchers m_1, ..., and m_n. template <typename Matcher1, typename Matcher2> class BothOfMatcher { public: BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} // This template type conversion operator allows a // BothOfMatcher<Matcher1, Matcher2> object to match any type that // both Matcher1 and Matcher2 can match. template <typename T> operator Matcher<T>() const { std::vector<Matcher<T> > values; values.push_back(SafeMatcherCast<T>(matcher1_)); values.push_back(SafeMatcherCast<T>(matcher2_)); return Matcher<T>(new AllOfMatcherImpl<T>(internal::move(values))); } private: Matcher1 matcher1_; Matcher2 matcher2_; GTEST_DISALLOW_ASSIGN_(BothOfMatcher); }; // Implements the AnyOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the AnyOfMatcher class template, as // that will prevent different instantiations of AnyOfMatcher from // sharing the same EitherOfMatcherImpl<T> class. template <typename T> class AnyOfMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { public: explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) : matchers_(internal::move(matchers)) {} virtual void DescribeTo(::std::ostream* os) const { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") or ("; matchers_[i].DescribeTo(os); } *os << ")"; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") and ("; matchers_[i].DescribeNegationTo(os); } *os << ")"; } virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, MatchResultListener* listener) const { std::string no_match_result; // If either matcher1_ or matcher2_ matches x, we just need to // explain why *one* of them matches. for (size_t i = 0; i < matchers_.size(); ++i) { StringMatchResultListener slistener; if (matchers_[i].MatchAndExplain(x, &slistener)) { *listener << slistener.str(); return true; } else { if (no_match_result.empty()) { no_match_result = slistener.str(); } else { std::string result = slistener.str(); if (!result.empty()) { no_match_result += ", and "; no_match_result += result; } } } } // Otherwise we need to explain why *both* of them fail. *listener << no_match_result; return false; } private: const std::vector<Matcher<T> > matchers_; GTEST_DISALLOW_ASSIGN_(AnyOfMatcherImpl); }; #if GTEST_LANG_CXX11 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). template <typename... Args> using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; #endif // GTEST_LANG_CXX11 // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which // matches a value that matches at least one of the matchers m_1, ..., // and m_n. template <typename Matcher1, typename Matcher2> class EitherOfMatcher { public: EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} // This template type conversion operator allows a // EitherOfMatcher<Matcher1, Matcher2> object to match any type that // both Matcher1 and Matcher2 can match. template <typename T> operator Matcher<T>() const { std::vector<Matcher<T> > values; values.push_back(SafeMatcherCast<T>(matcher1_)); values.push_back(SafeMatcherCast<T>(matcher2_)); return Matcher<T>(new AnyOfMatcherImpl<T>(internal::move(values))); } private: Matcher1 matcher1_; Matcher2 matcher2_; GTEST_DISALLOW_ASSIGN_(EitherOfMatcher); }; // Used for implementing Truly(pred), which turns a predicate into a // matcher. template <typename Predicate> class TrulyMatcher { public: explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} // This method template allows Truly(pred) to be used as a matcher // for type T where T is the argument type of predicate 'pred'. The // argument is passed by reference as the predicate may be // interested in the address of the argument. template <typename T> bool MatchAndExplain(T& x, // NOLINT MatchResultListener* /* listener */) const { // Without the if-statement, MSVC sometimes warns about converting // a value to bool (warning 4800). // // We cannot write 'return !!predicate_(x);' as that doesn't work // when predicate_(x) returns a class convertible to bool but // having no operator!(). if (predicate_(x)) return true; return false; } void DescribeTo(::std::ostream* os) const { *os << "satisfies the given predicate"; } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't satisfy the given predicate"; } private: Predicate predicate_; GTEST_DISALLOW_ASSIGN_(TrulyMatcher); }; // Used for implementing Matches(matcher), which turns a matcher into // a predicate. template <typename M> class MatcherAsPredicate { public: explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} // This template operator() allows Matches(m) to be used as a // predicate on type T where m is a matcher on type T. // // The argument x is passed by reference instead of by value, as // some matcher may be interested in its address (e.g. as in // Matches(Ref(n))(x)). template <typename T> bool operator()(const T& x) const { // We let matcher_ commit to a particular type here instead of // when the MatcherAsPredicate object was constructed. This // allows us to write Matches(m) where m is a polymorphic matcher // (e.g. Eq(5)). // // If we write Matcher<T>(matcher_).Matches(x) here, it won't // compile when matcher_ has type Matcher<const T&>; if we write // Matcher<const T&>(matcher_).Matches(x) here, it won't compile // when matcher_ has type Matcher<T>; if we just write // matcher_.Matches(x), it won't compile when matcher_ is // polymorphic, e.g. Eq(5). // // MatcherCast<const T&>() is necessary for making the code work // in all of the above situations. return MatcherCast<const T&>(matcher_).Matches(x); } private: M matcher_; GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate); }; // For implementing ASSERT_THAT() and EXPECT_THAT(). The template // argument M must be a type that can be converted to a matcher. template <typename M> class PredicateFormatterFromMatcher { public: explicit PredicateFormatterFromMatcher(M m) : matcher_(internal::move(m)) {} // This template () operator allows a PredicateFormatterFromMatcher // object to act as a predicate-formatter suitable for using with // Google Test's EXPECT_PRED_FORMAT1() macro. template <typename T> AssertionResult operator()(const char* value_text, const T& x) const { // We convert matcher_ to a Matcher<const T&> *now* instead of // when the PredicateFormatterFromMatcher object was constructed, // as matcher_ may be polymorphic (e.g. NotNull()) and we won't // know which type to instantiate it to until we actually see the // type of x here. // // We write SafeMatcherCast<const T&>(matcher_) instead of // Matcher<const T&>(matcher_), as the latter won't compile when // matcher_ has type Matcher<T> (e.g. An<int>()). // We don't write MatcherCast<const T&> either, as that allows // potentially unsafe downcasting of the matcher argument. const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); StringMatchResultListener listener; if (MatchPrintAndExplain(x, matcher, &listener)) return AssertionSuccess(); ::std::stringstream ss; ss << "Value of: " << value_text << "\n" << "Expected: "; matcher.DescribeTo(&ss); ss << "\n Actual: " << listener.str(); return AssertionFailure() << ss.str(); } private: const M matcher_; GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher); }; // A helper function for converting a matcher to a predicate-formatter // without the user needing to explicitly write the type. This is // used for implementing ASSERT_THAT() and EXPECT_THAT(). // Implementation detail: 'matcher' is received by-value to force decaying. template <typename M> inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(M matcher) { return PredicateFormatterFromMatcher<M>(internal::move(matcher)); } // Implements the polymorphic floating point equality matcher, which matches // two float values using ULP-based approximation or, optionally, a // user-specified epsilon. The template is meant to be instantiated with // FloatType being either float or double. template <typename FloatType> class FloatingEqMatcher { public: // Constructor for FloatingEqMatcher. // The matcher's input will be compared with expected. The matcher treats two // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, // equality comparisons between NANs will always return false. We specify a // negative max_abs_error_ term to indicate that ULP-based approximation will // be used for comparison. FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { } // Constructor that supports a user-specified max_abs_error that will be used // for comparison instead of ULP-based approximation. The max absolute // should be non-negative. FloatingEqMatcher(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(max_abs_error) { GTEST_CHECK_(max_abs_error >= 0) << ", where max_abs_error is" << max_abs_error; } // Implements floating point equality matcher as a Matcher<T>. template <typename T> class Impl : public MatcherInterface<T> { public: Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(max_abs_error) {} virtual bool MatchAndExplain(T value, MatchResultListener* listener) const { const FloatingPoint<FloatType> actual(value), expected(expected_); // Compares NaNs first, if nan_eq_nan_ is true. if (actual.is_nan() || expected.is_nan()) { if (actual.is_nan() && expected.is_nan()) { return nan_eq_nan_; } // One is nan; the other is not nan. return false; } if (HasMaxAbsError()) { // We perform an equality check so that inf will match inf, regardless // of error bounds. If the result of value - expected_ would result in // overflow or if either value is inf, the default result is infinity, // which should only match if max_abs_error_ is also infinity. if (value == expected_) { return true; } const FloatType diff = value - expected_; if (fabs(diff) <= max_abs_error_) { return true; } if (listener->IsInterested()) { *listener << "which is " << diff << " from " << expected_; } return false; } else { return actual.AlmostEquals(expected); } } virtual void DescribeTo(::std::ostream* os) const { // os->precision() returns the previously set precision, which we // store to restore the ostream to its original configuration // after outputting. const ::std::streamsize old_precision = os->precision( ::std::numeric_limits<FloatType>::digits10 + 2); if (FloatingPoint<FloatType>(expected_).is_nan()) { if (nan_eq_nan_) { *os << "is NaN"; } else { *os << "never matches"; } } else { *os << "is approximately " << expected_; if (HasMaxAbsError()) { *os << " (absolute error <= " << max_abs_error_ << ")"; } } os->precision(old_precision); } virtual void DescribeNegationTo(::std::ostream* os) const { // As before, get original precision. const ::std::streamsize old_precision = os->precision( ::std::numeric_limits<FloatType>::digits10 + 2); if (FloatingPoint<FloatType>(expected_).is_nan()) { if (nan_eq_nan_) { *os << "isn't NaN"; } else { *os << "is anything"; } } else { *os << "isn't approximately " << expected_; if (HasMaxAbsError()) { *os << " (absolute error > " << max_abs_error_ << ")"; } } // Restore original precision. os->precision(old_precision); } private: bool HasMaxAbsError() const { return max_abs_error_ >= 0; } const FloatType expected_; const bool nan_eq_nan_; // max_abs_error will be used for value comparison when >= 0. const FloatType max_abs_error_; GTEST_DISALLOW_ASSIGN_(Impl); }; // The following 3 type conversion operators allow FloatEq(expected) and // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a // Matcher<const float&>, or a Matcher<float&>, but nothing else. // (While Google's C++ coding style doesn't allow arguments passed // by non-const reference, we may see them in code not conforming to // the style. Therefore Google Mock needs to support them.) operator Matcher<FloatType>() const { return MakeMatcher( new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); } operator Matcher<const FloatType&>() const { return MakeMatcher( new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); } operator Matcher<FloatType&>() const { return MakeMatcher( new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); } private: const FloatType expected_; const bool nan_eq_nan_; // max_abs_error will be used for value comparison when >= 0. const FloatType max_abs_error_; GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher); }; // A 2-tuple ("binary") wrapper around FloatingEqMatcher: // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) // against y. The former implements "Eq", the latter "Near". At present, there // is no version that compares NaNs as equal. template <typename FloatType> class FloatingEq2Matcher { public: FloatingEq2Matcher() { Init(-1, false); } explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } explicit FloatingEq2Matcher(FloatType max_abs_error) { Init(max_abs_error, false); } FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { Init(max_abs_error, nan_eq_nan); } template <typename T1, typename T2> operator Matcher< ::testing::tuple<T1, T2> >() const { return MakeMatcher( new Impl< ::testing::tuple<T1, T2> >(max_abs_error_, nan_eq_nan_)); } template <typename T1, typename T2> operator Matcher<const ::testing::tuple<T1, T2>&>() const { return MakeMatcher( new Impl<const ::testing::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); } private: static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT return os << "an almost-equal pair"; } template <typename Tuple> class Impl : public MatcherInterface<Tuple> { public: Impl(FloatType max_abs_error, bool nan_eq_nan) : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {} virtual bool MatchAndExplain(Tuple args, MatchResultListener* listener) const { if (max_abs_error_ == -1) { FloatingEqMatcher<FloatType> fm(::testing::get<0>(args), nan_eq_nan_); return static_cast<Matcher<FloatType> >(fm).MatchAndExplain( ::testing::get<1>(args), listener); } else { FloatingEqMatcher<FloatType> fm(::testing::get<0>(args), nan_eq_nan_, max_abs_error_); return static_cast<Matcher<FloatType> >(fm).MatchAndExplain( ::testing::get<1>(args), listener); } } virtual void DescribeTo(::std::ostream* os) const { *os << "are " << GetDesc; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "aren't " << GetDesc; } private: FloatType max_abs_error_; const bool nan_eq_nan_; }; void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { max_abs_error_ = max_abs_error_val; nan_eq_nan_ = nan_eq_nan_val; } FloatType max_abs_error_; bool nan_eq_nan_; }; // Implements the Pointee(m) matcher for matching a pointer whose // pointee matches matcher m. The pointer can be either raw or smart. template <typename InnerMatcher> class PointeeMatcher { public: explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} // This type conversion operator template allows Pointee(m) to be // used as a matcher for any pointer type whose pointee type is // compatible with the inner matcher, where type Pointer can be // either a raw pointer or a smart pointer. // // The reason we do this instead of relying on // MakePolymorphicMatcher() is that the latter is not flexible // enough for implementing the DescribeTo() method of Pointee(). template <typename Pointer> operator Matcher<Pointer>() const { return Matcher<Pointer>( new Impl<GTEST_REFERENCE_TO_CONST_(Pointer)>(matcher_)); } private: // The monomorphic implementation that works for a particular pointer type. template <typename Pointer> class Impl : public MatcherInterface<Pointer> { public: typedef typename PointeeOf<GTEST_REMOVE_CONST_( // NOLINT GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee; explicit Impl(const InnerMatcher& matcher) : matcher_(MatcherCast<const Pointee&>(matcher)) {} virtual void DescribeTo(::std::ostream* os) const { *os << "points to a value that "; matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "does not point to a value that "; matcher_.DescribeTo(os); } virtual bool MatchAndExplain(Pointer pointer, MatchResultListener* listener) const { if (GetRawPointer(pointer) == NULL) return false; *listener << "which points to "; return MatchPrintAndExplain(*pointer, matcher_, listener); } private: const Matcher<const Pointee&> matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; const InnerMatcher matcher_; GTEST_DISALLOW_ASSIGN_(PointeeMatcher); }; #if GTEST_HAS_RTTI // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or // reference that matches inner_matcher when dynamic_cast<T> is applied. // The result of dynamic_cast<To> is forwarded to the inner matcher. // If To is a pointer and the cast fails, the inner matcher will receive NULL. // If To is a reference and the cast fails, this matcher returns false // immediately. template <typename To> class WhenDynamicCastToMatcherBase { public: explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) : matcher_(matcher) {} void DescribeTo(::std::ostream* os) const { GetCastTypeDescription(os); matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const { GetCastTypeDescription(os); matcher_.DescribeNegationTo(os); } protected: const Matcher<To> matcher_; static std::string GetToName() { return GetTypeName<To>(); } private: static void GetCastTypeDescription(::std::ostream* os) { *os << "when dynamic_cast to " << GetToName() << ", "; } GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase); }; // Primary template. // To is a pointer. Cast and forward the result. template <typename To> class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { public: explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) : WhenDynamicCastToMatcherBase<To>(matcher) {} template <typename From> bool MatchAndExplain(From from, MatchResultListener* listener) const { // FIXME: Add more detail on failures. ie did the dyn_cast fail? To to = dynamic_cast<To>(from); return MatchPrintAndExplain(to, this->matcher_, listener); } }; // Specialize for references. // In this case we return false if the dynamic_cast fails. template <typename To> class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { public: explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) : WhenDynamicCastToMatcherBase<To&>(matcher) {} template <typename From> bool MatchAndExplain(From& from, MatchResultListener* listener) const { // We don't want an std::bad_cast here, so do the cast with pointers. To* to = dynamic_cast<To*>(&from); if (to == NULL) { *listener << "which cannot be dynamic_cast to " << this->GetToName(); return false; } return MatchPrintAndExplain(*to, this->matcher_, listener); } }; #endif // GTEST_HAS_RTTI // Implements the Field() matcher for matching a field (i.e. member // variable) of an object. template <typename Class, typename FieldType> class FieldMatcher { public: FieldMatcher(FieldType Class::*field, const Matcher<const FieldType&>& matcher) : field_(field), matcher_(matcher), whose_field_("whose given field ") {} FieldMatcher(const std::string& field_name, FieldType Class::*field, const Matcher<const FieldType&>& matcher) : field_(field), matcher_(matcher), whose_field_("whose field `" + field_name + "` ") {} void DescribeTo(::std::ostream* os) const { *os << "is an object " << whose_field_; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const { *os << "is an object " << whose_field_; matcher_.DescribeNegationTo(os); } template <typename T> bool MatchAndExplain(const T& value, MatchResultListener* listener) const { return MatchAndExplainImpl( typename ::testing::internal:: is_pointer<GTEST_REMOVE_CONST_(T)>::type(), value, listener); } private: // The first argument of MatchAndExplainImpl() is needed to help // Symbian's C++ compiler choose which overload to use. Its type is // true_type iff the Field() matcher is used to match a pointer. bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, MatchResultListener* listener) const { *listener << whose_field_ << "is "; return MatchPrintAndExplain(obj.*field_, matcher_, listener); } bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, MatchResultListener* listener) const { if (p == NULL) return false; *listener << "which points to an object "; // Since *p has a field, it must be a class/struct/union type and // thus cannot be a pointer. Therefore we pass false_type() as // the first argument. return MatchAndExplainImpl(false_type(), *p, listener); } const FieldType Class::*field_; const Matcher<const FieldType&> matcher_; // Contains either "whose given field " if the name of the field is unknown // or "whose field `name_of_field` " if the name is known. const std::string whose_field_; GTEST_DISALLOW_ASSIGN_(FieldMatcher); }; // Implements the Property() matcher for matching a property // (i.e. return value of a getter method) of an object. // // Property is a const-qualified member function of Class returning // PropertyType. template <typename Class, typename PropertyType, typename Property> class PropertyMatcher { public: // The property may have a reference type, so 'const PropertyType&' // may cause double references and fail to compile. That's why we // need GTEST_REFERENCE_TO_CONST, which works regardless of // PropertyType being a reference or not. typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty; PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) : property_(property), matcher_(matcher), whose_property_("whose given property ") {} PropertyMatcher(const std::string& property_name, Property property, const Matcher<RefToConstProperty>& matcher) : property_(property), matcher_(matcher), whose_property_("whose property `" + property_name + "` ") {} void DescribeTo(::std::ostream* os) const { *os << "is an object " << whose_property_; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const { *os << "is an object " << whose_property_; matcher_.DescribeNegationTo(os); } template <typename T> bool MatchAndExplain(const T&value, MatchResultListener* listener) const { return MatchAndExplainImpl( typename ::testing::internal:: is_pointer<GTEST_REMOVE_CONST_(T)>::type(), value, listener); } private: // The first argument of MatchAndExplainImpl() is needed to help // Symbian's C++ compiler choose which overload to use. Its type is // true_type iff the Property() matcher is used to match a pointer. bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, MatchResultListener* listener) const { *listener << whose_property_ << "is "; // Cannot pass the return value (for example, int) to MatchPrintAndExplain, // which takes a non-const reference as argument. #if defined(_PREFAST_ ) && _MSC_VER == 1800 // Workaround bug in VC++ 2013's /analyze parser. // https://connect.microsoft.com/VisualStudio/feedback/details/1106363/internal-compiler-error-with-analyze-due-to-failure-to-infer-move posix::Abort(); // To make sure it is never run. return false; #else RefToConstProperty result = (obj.*property_)(); return MatchPrintAndExplain(result, matcher_, listener); #endif } bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, MatchResultListener* listener) const { if (p == NULL) return false; *listener << "which points to an object "; // Since *p has a property method, it must be a class/struct/union // type and thus cannot be a pointer. Therefore we pass // false_type() as the first argument. return MatchAndExplainImpl(false_type(), *p, listener); } Property property_; const Matcher<RefToConstProperty> matcher_; // Contains either "whose given property " if the name of the property is // unknown or "whose property `name_of_property` " if the name is known. const std::string whose_property_; GTEST_DISALLOW_ASSIGN_(PropertyMatcher); }; // Type traits specifying various features of different functors for ResultOf. // The default template specifies features for functor objects. template <typename Functor> struct CallableTraits { typedef Functor StorageType; static void CheckIsValid(Functor /* functor */) {} #if GTEST_LANG_CXX11 template <typename T> static auto Invoke(Functor f, T arg) -> decltype(f(arg)) { return f(arg); } #else typedef typename Functor::result_type ResultType; template <typename T> static ResultType Invoke(Functor f, T arg) { return f(arg); } #endif }; // Specialization for function pointers. template <typename ArgType, typename ResType> struct CallableTraits<ResType(*)(ArgType)> { typedef ResType ResultType; typedef ResType(*StorageType)(ArgType); static void CheckIsValid(ResType(*f)(ArgType)) { GTEST_CHECK_(f != NULL) << "NULL function pointer is passed into ResultOf()."; } template <typename T> static ResType Invoke(ResType(*f)(ArgType), T arg) { return (*f)(arg); } }; // Implements the ResultOf() matcher for matching a return value of a // unary function of an object. template <typename Callable, typename InnerMatcher> class ResultOfMatcher { public: ResultOfMatcher(Callable callable, InnerMatcher matcher) : callable_(internal::move(callable)), matcher_(internal::move(matcher)) { CallableTraits<Callable>::CheckIsValid(callable_); } template <typename T> operator Matcher<T>() const { return Matcher<T>(new Impl<T>(callable_, matcher_)); } private: typedef typename CallableTraits<Callable>::StorageType CallableStorageType; template <typename T> class Impl : public MatcherInterface<T> { #if GTEST_LANG_CXX11 using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( std::declval<CallableStorageType>(), std::declval<T>())); #else typedef typename CallableTraits<Callable>::ResultType ResultType; #endif public: template <typename M> Impl(const CallableStorageType& callable, const M& matcher) : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} virtual void DescribeTo(::std::ostream* os) const { *os << "is mapped by the given callable to a value that "; matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "is mapped by the given callable to a value that "; matcher_.DescribeNegationTo(os); } virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const { *listener << "which is mapped by the given callable to "; // Cannot pass the return value directly to MatchPrintAndExplain, which // takes a non-const reference as argument. // Also, specifying template argument explicitly is needed because T could // be a non-const reference (e.g. Matcher<Uncopyable&>). ResultType result = CallableTraits<Callable>::template Invoke<T>(callable_, obj); return MatchPrintAndExplain(result, matcher_, listener); } private: // Functors often define operator() as non-const method even though // they are actually stateless. But we need to use them even when // 'this' is a const pointer. It's the user's responsibility not to // use stateful callables with ResultOf(), which doesn't guarantee // how many times the callable will be invoked. mutable CallableStorageType callable_; const Matcher<ResultType> matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; // class Impl const CallableStorageType callable_; const InnerMatcher matcher_; GTEST_DISALLOW_ASSIGN_(ResultOfMatcher); }; // Implements a matcher that checks the size of an STL-style container. template <typename SizeMatcher> class SizeIsMatcher { public: explicit SizeIsMatcher(const SizeMatcher& size_matcher) : size_matcher_(size_matcher) { } template <typename Container> operator Matcher<Container>() const { return MakeMatcher(new Impl<Container>(size_matcher_)); } template <typename Container> class Impl : public MatcherInterface<Container> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; typedef typename ContainerView::type::size_type SizeType; explicit Impl(const SizeMatcher& size_matcher) : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} virtual void DescribeTo(::std::ostream* os) const { *os << "size "; size_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "size "; size_matcher_.DescribeNegationTo(os); } virtual bool MatchAndExplain(Container container, MatchResultListener* listener) const { SizeType size = container.size(); StringMatchResultListener size_listener; const bool result = size_matcher_.MatchAndExplain(size, &size_listener); *listener << "whose size " << size << (result ? " matches" : " doesn't match"); PrintIfNotEmpty(size_listener.str(), listener->stream()); return result; } private: const Matcher<SizeType> size_matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; private: const SizeMatcher size_matcher_; GTEST_DISALLOW_ASSIGN_(SizeIsMatcher); }; // Implements a matcher that checks the begin()..end() distance of an STL-style // container. template <typename DistanceMatcher> class BeginEndDistanceIsMatcher { public: explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) : distance_matcher_(distance_matcher) {} template <typename Container> operator Matcher<Container>() const { return MakeMatcher(new Impl<Container>(distance_matcher_)); } template <typename Container> class Impl : public MatcherInterface<Container> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; typedef typename std::iterator_traits< typename ContainerView::type::const_iterator>::difference_type DistanceType; explicit Impl(const DistanceMatcher& distance_matcher) : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} virtual void DescribeTo(::std::ostream* os) const { *os << "distance between begin() and end() "; distance_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "distance between begin() and end() "; distance_matcher_.DescribeNegationTo(os); } virtual bool MatchAndExplain(Container container, MatchResultListener* listener) const { #if GTEST_HAS_STD_BEGIN_AND_END_ using std::begin; using std::end; DistanceType distance = std::distance(begin(container), end(container)); #else DistanceType distance = std::distance(container.begin(), container.end()); #endif StringMatchResultListener distance_listener; const bool result = distance_matcher_.MatchAndExplain(distance, &distance_listener); *listener << "whose distance between begin() and end() " << distance << (result ? " matches" : " doesn't match"); PrintIfNotEmpty(distance_listener.str(), listener->stream()); return result; } private: const Matcher<DistanceType> distance_matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; private: const DistanceMatcher distance_matcher_; GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher); }; // Implements an equality matcher for any STL-style container whose elements // support ==. This matcher is like Eq(), but its failure explanations provide // more detailed information that is useful when the container is used as a set. // The failure message reports elements that are in one of the operands but not // the other. The failure messages do not report duplicate or out-of-order // elements in the containers (which don't properly matter to sets, but can // occur if the containers are vectors or lists, for example). // // Uses the container's const_iterator, value_type, operator ==, // begin(), and end(). template <typename Container> class ContainerEqMatcher { public: typedef internal::StlContainerView<Container> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; // We make a copy of expected in case the elements in it are modified // after this matcher is created. explicit ContainerEqMatcher(const Container& expected) : expected_(View::Copy(expected)) { // Makes sure the user doesn't instantiate this class template // with a const or reference type. (void)testing::StaticAssertTypeEq<Container, GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>(); } void DescribeTo(::std::ostream* os) const { *os << "equals "; UniversalPrint(expected_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "does not equal "; UniversalPrint(expected_, os); } template <typename LhsContainer> bool MatchAndExplain(const LhsContainer& lhs, MatchResultListener* listener) const { // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug // that causes LhsContainer to be a const type sometimes. typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)> LhsView; typedef typename LhsView::type LhsStlContainer; StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); if (lhs_stl_container == expected_) return true; ::std::ostream* const os = listener->stream(); if (os != NULL) { // Something is different. Check for extra values first. bool printed_header = false; for (typename LhsStlContainer::const_iterator it = lhs_stl_container.begin(); it != lhs_stl_container.end(); ++it) { if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == expected_.end()) { if (printed_header) { *os << ", "; } else { *os << "which has these unexpected elements: "; printed_header = true; } UniversalPrint(*it, os); } } // Now check for missing values. bool printed_header2 = false; for (typename StlContainer::const_iterator it = expected_.begin(); it != expected_.end(); ++it) { if (internal::ArrayAwareFind( lhs_stl_container.begin(), lhs_stl_container.end(), *it) == lhs_stl_container.end()) { if (printed_header2) { *os << ", "; } else { *os << (printed_header ? ",\nand" : "which") << " doesn't have these expected elements: "; printed_header2 = true; } UniversalPrint(*it, os); } } } return false; } private: const StlContainer expected_; GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher); }; // A comparator functor that uses the < operator to compare two values. struct LessComparator { template <typename T, typename U> bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } }; // Implements WhenSortedBy(comparator, container_matcher). template <typename Comparator, typename ContainerMatcher> class WhenSortedByMatcher { public: WhenSortedByMatcher(const Comparator& comparator, const ContainerMatcher& matcher) : comparator_(comparator), matcher_(matcher) {} template <typename LhsContainer> operator Matcher<LhsContainer>() const { return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); } template <typename LhsContainer> class Impl : public MatcherInterface<LhsContainer> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; typedef typename LhsView::type LhsStlContainer; typedef typename LhsView::const_reference LhsStlContainerReference; // Transforms std::pair<const Key, Value> into std::pair<Key, Value> // so that we can match associative containers. typedef typename RemoveConstFromKey< typename LhsStlContainer::value_type>::type LhsValue; Impl(const Comparator& comparator, const ContainerMatcher& matcher) : comparator_(comparator), matcher_(matcher) {} virtual void DescribeTo(::std::ostream* os) const { *os << "(when sorted) "; matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "(when sorted) "; matcher_.DescribeNegationTo(os); } virtual bool MatchAndExplain(LhsContainer lhs, MatchResultListener* listener) const { LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), lhs_stl_container.end()); ::std::sort( sorted_container.begin(), sorted_container.end(), comparator_); if (!listener->IsInterested()) { // If the listener is not interested, we do not need to // construct the inner explanation. return matcher_.Matches(sorted_container); } *listener << "which is "; UniversalPrint(sorted_container, listener->stream()); *listener << " when sorted"; StringMatchResultListener inner_listener; const bool match = matcher_.MatchAndExplain(sorted_container, &inner_listener); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } private: const Comparator comparator_; const Matcher<const ::std::vector<LhsValue>&> matcher_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); }; private: const Comparator comparator_; const ContainerMatcher matcher_; GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher); }; // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher // must be able to be safely cast to Matcher<tuple<const T1&, const // T2&> >, where T1 and T2 are the types of elements in the LHS // container and the RHS container respectively. template <typename TupleMatcher, typename RhsContainer> class PointwiseMatcher { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, use_UnorderedPointwise_with_hash_tables); public: typedef internal::StlContainerView<RhsContainer> RhsView; typedef typename RhsView::type RhsStlContainer; typedef typename RhsStlContainer::value_type RhsValue; // Like ContainerEq, we make a copy of rhs in case the elements in // it are modified after this matcher is created. PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) { // Makes sure the user doesn't instantiate this class template // with a const or reference type. (void)testing::StaticAssertTypeEq<RhsContainer, GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>(); } template <typename LhsContainer> operator Matcher<LhsContainer>() const { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, use_UnorderedPointwise_with_hash_tables); return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_)); } template <typename LhsContainer> class Impl : public MatcherInterface<LhsContainer> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; typedef typename LhsView::type LhsStlContainer; typedef typename LhsView::const_reference LhsStlContainerReference; typedef typename LhsStlContainer::value_type LhsValue; // We pass the LHS value and the RHS value to the inner matcher by // reference, as they may be expensive to copy. We must use tuple // instead of pair here, as a pair cannot hold references (C++ 98, // 20.2.2 [lib.pairs]). typedef ::testing::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), rhs_(rhs) {} virtual void DescribeTo(::std::ostream* os) const { *os << "contains " << rhs_.size() << " values, where each value and its corresponding value in "; UniversalPrinter<RhsStlContainer>::Print(rhs_, os); *os << " "; mono_tuple_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't contain exactly " << rhs_.size() << " values, or contains a value x at some index i" << " where x and the i-th value of "; UniversalPrint(rhs_, os); *os << " "; mono_tuple_matcher_.DescribeNegationTo(os); } virtual bool MatchAndExplain(LhsContainer lhs, MatchResultListener* listener) const { LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); const size_t actual_size = lhs_stl_container.size(); if (actual_size != rhs_.size()) { *listener << "which contains " << actual_size << " values"; return false; } typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); typename RhsStlContainer::const_iterator right = rhs_.begin(); for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { if (listener->IsInterested()) { StringMatchResultListener inner_listener; // Create InnerMatcherArg as a temporarily object to avoid it outlives // *left and *right. Dereference or the conversion to `const T&` may // return temp objects, e.g for vector<bool>. if (!mono_tuple_matcher_.MatchAndExplain( InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), ImplicitCast_<const RhsValue&>(*right)), &inner_listener)) { *listener << "where the value pair ("; UniversalPrint(*left, listener->stream()); *listener << ", "; UniversalPrint(*right, listener->stream()); *listener << ") at index #" << i << " don't match"; PrintIfNotEmpty(inner_listener.str(), listener->stream()); return false; } } else { if (!mono_tuple_matcher_.Matches( InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), ImplicitCast_<const RhsValue&>(*right)))) return false; } } return true; } private: const Matcher<InnerMatcherArg> mono_tuple_matcher_; const RhsStlContainer rhs_; GTEST_DISALLOW_ASSIGN_(Impl); }; private: const TupleMatcher tuple_matcher_; const RhsStlContainer rhs_; GTEST_DISALLOW_ASSIGN_(PointwiseMatcher); }; // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. template <typename Container> class QuantifierMatcherImpl : public MatcherInterface<Container> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::value_type Element; template <typename InnerMatcher> explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) : inner_matcher_( testing::SafeMatcherCast<const Element&>(inner_matcher)) {} // Checks whether: // * All elements in the container match, if all_elements_should_match. // * Any element in the container matches, if !all_elements_should_match. bool MatchAndExplainImpl(bool all_elements_should_match, Container container, MatchResultListener* listener) const { StlContainerReference stl_container = View::ConstReference(container); size_t i = 0; for (typename StlContainer::const_iterator it = stl_container.begin(); it != stl_container.end(); ++it, ++i) { StringMatchResultListener inner_listener; const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); if (matches != all_elements_should_match) { *listener << "whose element #" << i << (matches ? " matches" : " doesn't match"); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return !all_elements_should_match; } } return all_elements_should_match; } protected: const Matcher<const Element&> inner_matcher_; GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl); }; // Implements Contains(element_matcher) for the given argument type Container. // Symmetric to EachMatcherImpl. template <typename Container> class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { public: template <typename InnerMatcher> explicit ContainsMatcherImpl(InnerMatcher inner_matcher) : QuantifierMatcherImpl<Container>(inner_matcher) {} // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { *os << "contains at least one element that "; this->inner_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't contain any element that "; this->inner_matcher_.DescribeTo(os); } virtual bool MatchAndExplain(Container container, MatchResultListener* listener) const { return this->MatchAndExplainImpl(false, container, listener); } private: GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl); }; // Implements Each(element_matcher) for the given argument type Container. // Symmetric to ContainsMatcherImpl. template <typename Container> class EachMatcherImpl : public QuantifierMatcherImpl<Container> { public: template <typename InnerMatcher> explicit EachMatcherImpl(InnerMatcher inner_matcher) : QuantifierMatcherImpl<Container>(inner_matcher) {} // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { *os << "only contains elements that "; this->inner_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "contains some element that "; this->inner_matcher_.DescribeNegationTo(os); } virtual bool MatchAndExplain(Container container, MatchResultListener* listener) const { return this->MatchAndExplainImpl(true, container, listener); } private: GTEST_DISALLOW_ASSIGN_(EachMatcherImpl); }; // Implements polymorphic Contains(element_matcher). template <typename M> class ContainsMatcher { public: explicit ContainsMatcher(M m) : inner_matcher_(m) {} template <typename Container> operator Matcher<Container>() const { return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_)); } private: const M inner_matcher_; GTEST_DISALLOW_ASSIGN_(ContainsMatcher); }; // Implements polymorphic Each(element_matcher). template <typename M> class EachMatcher { public: explicit EachMatcher(M m) : inner_matcher_(m) {} template <typename Container> operator Matcher<Container>() const { return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_)); } private: const M inner_matcher_; GTEST_DISALLOW_ASSIGN_(EachMatcher); }; struct Rank1 {}; struct Rank0 : Rank1 {}; namespace pair_getters { #if GTEST_LANG_CXX11 using std::get; template <typename T> auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT return get<0>(x); } template <typename T> auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT return x.first; } template <typename T> auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT return get<1>(x); } template <typename T> auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT return x.second; } #else template <typename T> typename T::first_type& First(T& x, Rank0) { // NOLINT return x.first; } template <typename T> const typename T::first_type& First(const T& x, Rank0) { return x.first; } template <typename T> typename T::second_type& Second(T& x, Rank0) { // NOLINT return x.second; } template <typename T> const typename T::second_type& Second(const T& x, Rank0) { return x.second; } #endif // GTEST_LANG_CXX11 } // namespace pair_getters // Implements Key(inner_matcher) for the given argument pair type. // Key(inner_matcher) matches an std::pair whose 'first' field matches // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an // std::map that contains at least one element whose key is >= 5. template <typename PairType> class KeyMatcherImpl : public MatcherInterface<PairType> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; typedef typename RawPairType::first_type KeyType; template <typename InnerMatcher> explicit KeyMatcherImpl(InnerMatcher inner_matcher) : inner_matcher_( testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { } // Returns true iff 'key_value.first' (the key) matches the inner matcher. virtual bool MatchAndExplain(PairType key_value, MatchResultListener* listener) const { StringMatchResultListener inner_listener; const bool match = inner_matcher_.MatchAndExplain( pair_getters::First(key_value, Rank0()), &inner_listener); const std::string explanation = inner_listener.str(); if (explanation != "") { *listener << "whose first field is a value " << explanation; } return match; } // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { *os << "has a key that "; inner_matcher_.DescribeTo(os); } // Describes what the negation of this matcher does. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't have a key that "; inner_matcher_.DescribeTo(os); } private: const Matcher<const KeyType&> inner_matcher_; GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl); }; // Implements polymorphic Key(matcher_for_key). template <typename M> class KeyMatcher { public: explicit KeyMatcher(M m) : matcher_for_key_(m) {} template <typename PairType> operator Matcher<PairType>() const { return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_)); } private: const M matcher_for_key_; GTEST_DISALLOW_ASSIGN_(KeyMatcher); }; // Implements Pair(first_matcher, second_matcher) for the given argument pair // type with its two matchers. See Pair() function below. template <typename PairType> class PairMatcherImpl : public MatcherInterface<PairType> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; typedef typename RawPairType::first_type FirstType; typedef typename RawPairType::second_type SecondType; template <typename FirstMatcher, typename SecondMatcher> PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) : first_matcher_( testing::SafeMatcherCast<const FirstType&>(first_matcher)), second_matcher_( testing::SafeMatcherCast<const SecondType&>(second_matcher)) { } // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { *os << "has a first field that "; first_matcher_.DescribeTo(os); *os << ", and has a second field that "; second_matcher_.DescribeTo(os); } // Describes what the negation of this matcher does. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "has a first field that "; first_matcher_.DescribeNegationTo(os); *os << ", or has a second field that "; second_matcher_.DescribeNegationTo(os); } // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second' // matches second_matcher. virtual bool MatchAndExplain(PairType a_pair, MatchResultListener* listener) const { if (!listener->IsInterested()) { // If the listener is not interested, we don't need to construct the // explanation. return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); } StringMatchResultListener first_inner_listener; if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), &first_inner_listener)) { *listener << "whose first field does not match"; PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); return false; } StringMatchResultListener second_inner_listener; if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), &second_inner_listener)) { *listener << "whose second field does not match"; PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); return false; } ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), listener); return true; } private: void ExplainSuccess(const std::string& first_explanation, const std::string& second_explanation, MatchResultListener* listener) const { *listener << "whose both fields match"; if (first_explanation != "") { *listener << ", where the first field is a value " << first_explanation; } if (second_explanation != "") { *listener << ", "; if (first_explanation != "") { *listener << "and "; } else { *listener << "where "; } *listener << "the second field is a value " << second_explanation; } } const Matcher<const FirstType&> first_matcher_; const Matcher<const SecondType&> second_matcher_; GTEST_DISALLOW_ASSIGN_(PairMatcherImpl); }; // Implements polymorphic Pair(first_matcher, second_matcher). template <typename FirstMatcher, typename SecondMatcher> class PairMatcher { public: PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) : first_matcher_(first_matcher), second_matcher_(second_matcher) {} template <typename PairType> operator Matcher<PairType> () const { return MakeMatcher( new PairMatcherImpl<PairType>( first_matcher_, second_matcher_)); } private: const FirstMatcher first_matcher_; const SecondMatcher second_matcher_; GTEST_DISALLOW_ASSIGN_(PairMatcher); }; // Implements ElementsAre() and ElementsAreArray(). template <typename Container> class ElementsAreMatcherImpl : public MatcherInterface<Container> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef internal::StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::value_type Element; // Constructs the matcher from a sequence of element values or // element matchers. template <typename InputIter> ElementsAreMatcherImpl(InputIter first, InputIter last) { while (first != last) { matchers_.push_back(MatcherCast<const Element&>(*first++)); } } // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { if (count() == 0) { *os << "is empty"; } else if (count() == 1) { *os << "has 1 element that "; matchers_[0].DescribeTo(os); } else { *os << "has " << Elements(count()) << " where\n"; for (size_t i = 0; i != count(); ++i) { *os << "element #" << i << " "; matchers_[i].DescribeTo(os); if (i + 1 < count()) { *os << ",\n"; } } } } // Describes what the negation of this matcher does. virtual void DescribeNegationTo(::std::ostream* os) const { if (count() == 0) { *os << "isn't empty"; return; } *os << "doesn't have " << Elements(count()) << ", or\n"; for (size_t i = 0; i != count(); ++i) { *os << "element #" << i << " "; matchers_[i].DescribeNegationTo(os); if (i + 1 < count()) { *os << ", or\n"; } } } virtual bool MatchAndExplain(Container container, MatchResultListener* listener) const { // To work with stream-like "containers", we must only walk // through the elements in one pass. const bool listener_interested = listener->IsInterested(); // explanations[i] is the explanation of the element at index i. ::std::vector<std::string> explanations(count()); StlContainerReference stl_container = View::ConstReference(container); typename StlContainer::const_iterator it = stl_container.begin(); size_t exam_pos = 0; bool mismatch_found = false; // Have we found a mismatched element yet? // Go through the elements and matchers in pairs, until we reach // the end of either the elements or the matchers, or until we find a // mismatch. for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { bool match; // Does the current element match the current matcher? if (listener_interested) { StringMatchResultListener s; match = matchers_[exam_pos].MatchAndExplain(*it, &s); explanations[exam_pos] = s.str(); } else { match = matchers_[exam_pos].Matches(*it); } if (!match) { mismatch_found = true; break; } } // If mismatch_found is true, 'exam_pos' is the index of the mismatch. // Find how many elements the actual container has. We avoid // calling size() s.t. this code works for stream-like "containers" // that don't define size(). size_t actual_count = exam_pos; for (; it != stl_container.end(); ++it) { ++actual_count; } if (actual_count != count()) { // The element count doesn't match. If the container is empty, // there's no need to explain anything as Google Mock already // prints the empty container. Otherwise we just need to show // how many elements there actually are. if (listener_interested && (actual_count != 0)) { *listener << "which has " << Elements(actual_count); } return false; } if (mismatch_found) { // The element count matches, but the exam_pos-th element doesn't match. if (listener_interested) { *listener << "whose element #" << exam_pos << " doesn't match"; PrintIfNotEmpty(explanations[exam_pos], listener->stream()); } return false; } // Every element matches its expectation. We need to explain why // (the obvious ones can be skipped). if (listener_interested) { bool reason_printed = false; for (size_t i = 0; i != count(); ++i) { const std::string& s = explanations[i]; if (!s.empty()) { if (reason_printed) { *listener << ",\nand "; } *listener << "whose element #" << i << " matches, " << s; reason_printed = true; } } } return true; } private: static Message Elements(size_t count) { return Message() << count << (count == 1 ? " element" : " elements"); } size_t count() const { return matchers_.size(); } ::std::vector<Matcher<const Element&> > matchers_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl); }; // Connectivity matrix of (elements X matchers), in element-major order. // Initially, there are no edges. // Use NextGraph() to iterate over all possible edge configurations. // Use Randomize() to generate a random edge configuration. class GTEST_API_ MatchMatrix { public: MatchMatrix(size_t num_elements, size_t num_matchers) : num_elements_(num_elements), num_matchers_(num_matchers), matched_(num_elements_* num_matchers_, 0) { } size_t LhsSize() const { return num_elements_; } size_t RhsSize() const { return num_matchers_; } bool HasEdge(size_t ilhs, size_t irhs) const { return matched_[SpaceIndex(ilhs, irhs)] == 1; } void SetEdge(size_t ilhs, size_t irhs, bool b) { matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; } // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, // adds 1 to that number; returns false if incrementing the graph left it // empty. bool NextGraph(); void Randomize(); std::string DebugString() const; private: size_t SpaceIndex(size_t ilhs, size_t irhs) const { return ilhs * num_matchers_ + irhs; } size_t num_elements_; size_t num_matchers_; // Each element is a char interpreted as bool. They are stored as a // flattened array in lhs-major order, use 'SpaceIndex()' to translate // a (ilhs, irhs) matrix coordinate into an offset. ::std::vector<char> matched_; }; typedef ::std::pair<size_t, size_t> ElementMatcherPair; typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; // Returns a maximum bipartite matching for the specified graph 'g'. // The matching is represented as a vector of {element, matcher} pairs. GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g); struct UnorderedMatcherRequire { enum Flags { Superset = 1 << 0, Subset = 1 << 1, ExactMatch = Superset | Subset, }; }; // Untyped base class for implementing UnorderedElementsAre. By // putting logic that's not specific to the element type here, we // reduce binary bloat and increase compilation speed. class GTEST_API_ UnorderedElementsAreMatcherImplBase { protected: explicit UnorderedElementsAreMatcherImplBase( UnorderedMatcherRequire::Flags matcher_flags) : match_flags_(matcher_flags) {} // A vector of matcher describers, one for each element matcher. // Does not own the describers (and thus can be used only when the // element matchers are alive). typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; // Describes this UnorderedElementsAre matcher. void DescribeToImpl(::std::ostream* os) const; // Describes the negation of this UnorderedElementsAre matcher. void DescribeNegationToImpl(::std::ostream* os) const; bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, const MatchMatrix& matrix, MatchResultListener* listener) const; bool FindPairing(const MatchMatrix& matrix, MatchResultListener* listener) const; MatcherDescriberVec& matcher_describers() { return matcher_describers_; } static Message Elements(size_t n) { return Message() << n << " element" << (n == 1 ? "" : "s"); } UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } private: UnorderedMatcherRequire::Flags match_flags_; MatcherDescriberVec matcher_describers_; GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase); }; // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and // IsSupersetOf. template <typename Container> class UnorderedElementsAreMatcherImpl : public MatcherInterface<Container>, public UnorderedElementsAreMatcherImplBase { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef internal::StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::const_iterator StlContainerConstIterator; typedef typename StlContainer::value_type Element; template <typename InputIter> UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, InputIter first, InputIter last) : UnorderedElementsAreMatcherImplBase(matcher_flags) { for (; first != last; ++first) { matchers_.push_back(MatcherCast<const Element&>(*first)); matcher_describers().push_back(matchers_.back().GetDescriber()); } } // Describes what this matcher does. virtual void DescribeTo(::std::ostream* os) const { return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); } // Describes what the negation of this matcher does. virtual void DescribeNegationTo(::std::ostream* os) const { return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); } virtual bool MatchAndExplain(Container container, MatchResultListener* listener) const { StlContainerReference stl_container = View::ConstReference(container); ::std::vector<std::string> element_printouts; MatchMatrix matrix = AnalyzeElements(stl_container.begin(), stl_container.end(), &element_printouts, listener); if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { return true; } if (match_flags() == UnorderedMatcherRequire::ExactMatch) { if (matrix.LhsSize() != matrix.RhsSize()) { // The element count doesn't match. If the container is empty, // there's no need to explain anything as Google Mock already // prints the empty container. Otherwise we just need to show // how many elements there actually are. if (matrix.LhsSize() != 0 && listener->IsInterested()) { *listener << "which has " << Elements(matrix.LhsSize()); } return false; } } return VerifyMatchMatrix(element_printouts, matrix, listener) && FindPairing(matrix, listener); } private: template <typename ElementIter> MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, ::std::vector<std::string>* element_printouts, MatchResultListener* listener) const { element_printouts->clear(); ::std::vector<char> did_match; size_t num_elements = 0; for (; elem_first != elem_last; ++num_elements, ++elem_first) { if (listener->IsInterested()) { element_printouts->push_back(PrintToString(*elem_first)); } for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { did_match.push_back(Matches(matchers_[irhs])(*elem_first)); } } MatchMatrix matrix(num_elements, matchers_.size()); ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); } } return matrix; } ::std::vector<Matcher<const Element&> > matchers_; GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl); }; // Functor for use in TransformTuple. // Performs MatcherCast<Target> on an input argument of any type. template <typename Target> struct CastAndAppendTransform { template <typename Arg> Matcher<Target> operator()(const Arg& a) const { return MatcherCast<Target>(a); } }; // Implements UnorderedElementsAre. template <typename MatcherTuple> class UnorderedElementsAreMatcher { public: explicit UnorderedElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type View; typedef typename View::value_type Element; typedef ::std::vector<Matcher<const Element&> > MatcherVec; MatcherVec matchers; matchers.reserve(::testing::tuple_size<MatcherTuple>::value); TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, ::std::back_inserter(matchers)); return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>( UnorderedMatcherRequire::ExactMatch, matchers.begin(), matchers.end())); } private: const MatcherTuple matchers_; GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher); }; // Implements ElementsAre. template <typename MatcherTuple> class ElementsAreMatcher { public: explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} template <typename Container> operator Matcher<Container>() const { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || ::testing::tuple_size<MatcherTuple>::value < 2, use_UnorderedElementsAre_with_hash_tables); typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type View; typedef typename View::value_type Element; typedef ::std::vector<Matcher<const Element&> > MatcherVec; MatcherVec matchers; matchers.reserve(::testing::tuple_size<MatcherTuple>::value); TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, ::std::back_inserter(matchers)); return MakeMatcher(new ElementsAreMatcherImpl<Container>( matchers.begin(), matchers.end())); } private: const MatcherTuple matchers_; GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher); }; // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). template <typename T> class UnorderedElementsAreArrayMatcher { public: template <typename Iter> UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, Iter first, Iter last) : match_flags_(match_flags), matchers_(first, last) {} template <typename Container> operator Matcher<Container>() const { return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>( match_flags_, matchers_.begin(), matchers_.end())); } private: UnorderedMatcherRequire::Flags match_flags_; ::std::vector<T> matchers_; GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher); }; // Implements ElementsAreArray(). template <typename T> class ElementsAreArrayMatcher { public: template <typename Iter> ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} template <typename Container> operator Matcher<Container>() const { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, use_UnorderedElementsAreArray_with_hash_tables); return MakeMatcher(new ElementsAreMatcherImpl<Container>( matchers_.begin(), matchers_.end())); } private: const ::std::vector<T> matchers_; GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher); }; // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, // second) is a polymorphic matcher that matches a value x iff tm // matches tuple (x, second). Useful for implementing // UnorderedPointwise() in terms of UnorderedElementsAreArray(). // // BoundSecondMatcher is copyable and assignable, as we need to put // instances of this class in a vector when implementing // UnorderedPointwise(). template <typename Tuple2Matcher, typename Second> class BoundSecondMatcher { public: BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) : tuple2_matcher_(tm), second_value_(second) {} template <typename T> operator Matcher<T>() const { return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); } // We have to define this for UnorderedPointwise() to compile in // C++98 mode, as it puts BoundSecondMatcher instances in a vector, // which requires the elements to be assignable in C++98. The // compiler cannot generate the operator= for us, as Tuple2Matcher // and Second may not be assignable. // // However, this should never be called, so the implementation just // need to assert. void operator=(const BoundSecondMatcher& /*rhs*/) { GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; } private: template <typename T> class Impl : public MatcherInterface<T> { public: typedef ::testing::tuple<T, Second> ArgTuple; Impl(const Tuple2Matcher& tm, const Second& second) : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), second_value_(second) {} virtual void DescribeTo(::std::ostream* os) const { *os << "and "; UniversalPrint(second_value_, os); *os << " "; mono_tuple2_matcher_.DescribeTo(os); } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), listener); } private: const Matcher<const ArgTuple&> mono_tuple2_matcher_; const Second second_value_; GTEST_DISALLOW_ASSIGN_(Impl); }; const Tuple2Matcher tuple2_matcher_; const Second second_value_; }; // Given a 2-tuple matcher tm and a value second, // MatcherBindSecond(tm, second) returns a matcher that matches a // value x iff tm matches tuple (x, second). Useful for implementing // UnorderedPointwise() in terms of UnorderedElementsAreArray(). template <typename Tuple2Matcher, typename Second> BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( const Tuple2Matcher& tm, const Second& second) { return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); } // Returns the description for a matcher defined using the MATCHER*() // macro where the user-supplied description string is "", if // 'negation' is false; otherwise returns the description of the // negation of the matcher. 'param_values' contains a list of strings // that are the print-out of the matcher's parameters. GTEST_API_ std::string FormatMatcherDescription(bool negation, const char* matcher_name, const Strings& param_values); // Implements a matcher that checks the value of a optional<> type variable. template <typename ValueMatcher> class OptionalMatcher { public: explicit OptionalMatcher(const ValueMatcher& value_matcher) : value_matcher_(value_matcher) {} template <typename Optional> operator Matcher<Optional>() const { return MakeMatcher(new Impl<Optional>(value_matcher_)); } template <typename Optional> class Impl : public MatcherInterface<Optional> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; typedef typename OptionalView::value_type ValueType; explicit Impl(const ValueMatcher& value_matcher) : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} virtual void DescribeTo(::std::ostream* os) const { *os << "value "; value_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "value "; value_matcher_.DescribeNegationTo(os); } virtual bool MatchAndExplain(Optional optional, MatchResultListener* listener) const { if (!optional) { *listener << "which is not engaged"; return false; } const ValueType& value = *optional; StringMatchResultListener value_listener; const bool match = value_matcher_.MatchAndExplain(value, &value_listener); *listener << "whose value " << PrintToString(value) << (match ? " matches" : " doesn't match"); PrintIfNotEmpty(value_listener.str(), listener->stream()); return match; } private: const Matcher<ValueType> value_matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; private: const ValueMatcher value_matcher_; GTEST_DISALLOW_ASSIGN_(OptionalMatcher); }; namespace variant_matcher { // Overloads to allow VariantMatcher to do proper ADL lookup. template <typename T> void holds_alternative() {} template <typename T> void get() {} // Implements a matcher that checks the value of a variant<> type variable. template <typename T> class VariantMatcher { public: explicit VariantMatcher(::testing::Matcher<const T&> matcher) : matcher_(internal::move(matcher)) {} template <typename Variant> bool MatchAndExplain(const Variant& value, ::testing::MatchResultListener* listener) const { if (!listener->IsInterested()) { return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); } if (!holds_alternative<T>(value)) { *listener << "whose value is not of type '" << GetTypeName() << "'"; return false; } const T& elem = get<T>(value); StringMatchResultListener elem_listener; const bool match = matcher_.MatchAndExplain(elem, &elem_listener); *listener << "whose value " << PrintToString(elem) << (match ? " matches" : " doesn't match"); PrintIfNotEmpty(elem_listener.str(), listener->stream()); return match; } void DescribeTo(std::ostream* os) const { *os << "is a variant<> with value of type '" << GetTypeName() << "' and the value "; matcher_.DescribeTo(os); } void DescribeNegationTo(std::ostream* os) const { *os << "is a variant<> with value of type other than '" << GetTypeName() << "' or the value "; matcher_.DescribeNegationTo(os); } private: static std::string GetTypeName() { #if GTEST_HAS_RTTI GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( return internal::GetTypeName<T>()); #endif return "the element type"; } const ::testing::Matcher<const T&> matcher_; }; } // namespace variant_matcher namespace any_cast_matcher { // Overloads to allow AnyCastMatcher to do proper ADL lookup. template <typename T> void any_cast() {} // Implements a matcher that any_casts the value. template <typename T> class AnyCastMatcher { public: explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) : matcher_(matcher) {} template <typename AnyType> bool MatchAndExplain(const AnyType& value, ::testing::MatchResultListener* listener) const { if (!listener->IsInterested()) { const T* ptr = any_cast<T>(&value); return ptr != NULL && matcher_.Matches(*ptr); } const T* elem = any_cast<T>(&value); if (elem == NULL) { *listener << "whose value is not of type '" << GetTypeName() << "'"; return false; } StringMatchResultListener elem_listener; const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); *listener << "whose value " << PrintToString(*elem) << (match ? " matches" : " doesn't match"); PrintIfNotEmpty(elem_listener.str(), listener->stream()); return match; } void DescribeTo(std::ostream* os) const { *os << "is an 'any' type with value of type '" << GetTypeName() << "' and the value "; matcher_.DescribeTo(os); } void DescribeNegationTo(std::ostream* os) const { *os << "is an 'any' type with value of type other than '" << GetTypeName() << "' or the value "; matcher_.DescribeNegationTo(os); } private: static std::string GetTypeName() { #if GTEST_HAS_RTTI GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( return internal::GetTypeName<T>()); #endif return "the element type"; } const ::testing::Matcher<const T&> matcher_; }; } // namespace any_cast_matcher } // namespace internal // ElementsAreArray(iterator_first, iterator_last) // ElementsAreArray(pointer, count) // ElementsAreArray(array) // ElementsAreArray(container) // ElementsAreArray({ e1, e2, ..., en }) // // The ElementsAreArray() functions are like ElementsAre(...), except // that they are given a homogeneous sequence rather than taking each // element as a function argument. The sequence can be specified as an // array, a pointer and count, a vector, an initializer list, or an // STL iterator range. In each of these cases, the underlying sequence // can be either a sequence of values or a sequence of matchers. // // All forms of ElementsAreArray() make a copy of the input matcher sequence. template <typename Iter> inline internal::ElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> ElementsAreArray(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::ElementsAreArrayMatcher<T>(first, last); } template <typename T> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( const T* pointer, size_t count) { return ElementsAreArray(pointer, pointer + count); } template <typename T, size_t N> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( const T (&array)[N]) { return ElementsAreArray(array, N); } template <typename Container> inline internal::ElementsAreArrayMatcher<typename Container::value_type> ElementsAreArray(const Container& container) { return ElementsAreArray(container.begin(), container.end()); } #if GTEST_HAS_STD_INITIALIZER_LIST_ template <typename T> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(::std::initializer_list<T> xs) { return ElementsAreArray(xs.begin(), xs.end()); } #endif // UnorderedElementsAreArray(iterator_first, iterator_last) // UnorderedElementsAreArray(pointer, count) // UnorderedElementsAreArray(array) // UnorderedElementsAreArray(container) // UnorderedElementsAreArray({ e1, e2, ..., en }) // // UnorderedElementsAreArray() verifies that a bijective mapping onto a // collection of matchers exists. // // The matchers can be specified as an array, a pointer and count, a container, // an initializer list, or an STL iterator range. In each of these cases, the // underlying matchers can be either values or matchers. template <typename Iter> inline internal::UnorderedElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> UnorderedElementsAreArray(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::UnorderedElementsAreArrayMatcher<T>( internal::UnorderedMatcherRequire::ExactMatch, first, last); } template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(const T* pointer, size_t count) { return UnorderedElementsAreArray(pointer, pointer + count); } template <typename T, size_t N> inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(const T (&array)[N]) { return UnorderedElementsAreArray(array, N); } template <typename Container> inline internal::UnorderedElementsAreArrayMatcher< typename Container::value_type> UnorderedElementsAreArray(const Container& container) { return UnorderedElementsAreArray(container.begin(), container.end()); } #if GTEST_HAS_STD_INITIALIZER_LIST_ template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(::std::initializer_list<T> xs) { return UnorderedElementsAreArray(xs.begin(), xs.end()); } #endif // _ is a matcher that matches anything of any type. // // This definition is fine as: // // 1. The C++ standard permits using the name _ in a namespace that // is not the global namespace or ::std. // 2. The AnythingMatcher class has no data member or constructor, // so it's OK to create global variables of this type. // 3. c-style has approved of using _ in this case. const internal::AnythingMatcher _ = {}; // Creates a matcher that matches any value of the given type T. template <typename T> inline Matcher<T> A() { return Matcher<T>(new internal::AnyMatcherImpl<T>()); } // Creates a matcher that matches any value of the given type T. template <typename T> inline Matcher<T> An() { return A<T>(); } // Creates a polymorphic matcher that matches anything equal to x. // Note: if the parameter of Eq() were declared as const T&, Eq("foo") // wouldn't compile. template <typename T> inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); } // Constructs a Matcher<T> from a 'value' of type T. The constructed // matcher matches any value that's equal to 'value'. template <typename T> Matcher<T>::Matcher(T value) { *this = Eq(value); } template <typename T, typename M> Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( const M& value, internal::BooleanConstant<false> /* convertible_to_matcher */, internal::BooleanConstant<false> /* convertible_to_T */) { return Eq(value); } // Creates a monomorphic matcher that matches anything with type Lhs // and equal to rhs. A user may need to use this instead of Eq(...) // in order to resolve an overloading ambiguity. // // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x)) // or Matcher<T>(x), but more readable than the latter. // // We could define similar monomorphic matchers for other comparison // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do // it yet as those are used much less than Eq() in practice. A user // can always write Matcher<T>(Lt(5)) to be explicit about the type, // for example. template <typename Lhs, typename Rhs> inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); } // Creates a polymorphic matcher that matches anything >= x. template <typename Rhs> inline internal::GeMatcher<Rhs> Ge(Rhs x) { return internal::GeMatcher<Rhs>(x); } // Creates a polymorphic matcher that matches anything > x. template <typename Rhs> inline internal::GtMatcher<Rhs> Gt(Rhs x) { return internal::GtMatcher<Rhs>(x); } // Creates a polymorphic matcher that matches anything <= x. template <typename Rhs> inline internal::LeMatcher<Rhs> Le(Rhs x) { return internal::LeMatcher<Rhs>(x); } // Creates a polymorphic matcher that matches anything < x. template <typename Rhs> inline internal::LtMatcher<Rhs> Lt(Rhs x) { return internal::LtMatcher<Rhs>(x); } // Creates a polymorphic matcher that matches anything != x. template <typename Rhs> inline internal::NeMatcher<Rhs> Ne(Rhs x) { return internal::NeMatcher<Rhs>(x); } // Creates a polymorphic matcher that matches any NULL pointer. inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { return MakePolymorphicMatcher(internal::IsNullMatcher()); } // Creates a polymorphic matcher that matches any non-NULL pointer. // This is convenient as Not(NULL) doesn't compile (the compiler // thinks that that expression is comparing a pointer with an integer). inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { return MakePolymorphicMatcher(internal::NotNullMatcher()); } // Creates a polymorphic matcher that matches any argument that // references variable x. template <typename T> inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT return internal::RefMatcher<T&>(x); } // Creates a matcher that matches any double argument approximately // equal to rhs, where two NANs are considered unequal. inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { return internal::FloatingEqMatcher<double>(rhs, false); } // Creates a matcher that matches any double argument approximately // equal to rhs, including NaN values when rhs is NaN. inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { return internal::FloatingEqMatcher<double>(rhs, true); } // Creates a matcher that matches any double argument approximately equal to // rhs, up to the specified max absolute error bound, where two NANs are // considered unequal. The max absolute error bound must be non-negative. inline internal::FloatingEqMatcher<double> DoubleNear( double rhs, double max_abs_error) { return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); } // Creates a matcher that matches any double argument approximately equal to // rhs, up to the specified max absolute error bound, including NaN values when // rhs is NaN. The max absolute error bound must be non-negative. inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( double rhs, double max_abs_error) { return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); } // Creates a matcher that matches any float argument approximately // equal to rhs, where two NANs are considered unequal. inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { return internal::FloatingEqMatcher<float>(rhs, false); } // Creates a matcher that matches any float argument approximately // equal to rhs, including NaN values when rhs is NaN. inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { return internal::FloatingEqMatcher<float>(rhs, true); } // Creates a matcher that matches any float argument approximately equal to // rhs, up to the specified max absolute error bound, where two NANs are // considered unequal. The max absolute error bound must be non-negative. inline internal::FloatingEqMatcher<float> FloatNear( float rhs, float max_abs_error) { return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); } // Creates a matcher that matches any float argument approximately equal to // rhs, up to the specified max absolute error bound, including NaN values when // rhs is NaN. The max absolute error bound must be non-negative. inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( float rhs, float max_abs_error) { return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); } // Creates a matcher that matches a pointer (raw or smart) that points // to a value that matches inner_matcher. template <typename InnerMatcher> inline internal::PointeeMatcher<InnerMatcher> Pointee( const InnerMatcher& inner_matcher) { return internal::PointeeMatcher<InnerMatcher>(inner_matcher); } #if GTEST_HAS_RTTI // Creates a matcher that matches a pointer or reference that matches // inner_matcher when dynamic_cast<To> is applied. // The result of dynamic_cast<To> is forwarded to the inner matcher. // If To is a pointer and the cast fails, the inner matcher will receive NULL. // If To is a reference and the cast fails, this matcher returns false // immediately. template <typename To> inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > WhenDynamicCastTo(const Matcher<To>& inner_matcher) { return MakePolymorphicMatcher( internal::WhenDynamicCastToMatcher<To>(inner_matcher)); } #endif // GTEST_HAS_RTTI // Creates a matcher that matches an object whose given field matches // 'matcher'. For example, // Field(&Foo::number, Ge(5)) // matches a Foo object x iff x.number >= 5. template <typename Class, typename FieldType, typename FieldMatcher> inline PolymorphicMatcher< internal::FieldMatcher<Class, FieldType> > Field( FieldType Class::*field, const FieldMatcher& matcher) { return MakePolymorphicMatcher( internal::FieldMatcher<Class, FieldType>( field, MatcherCast<const FieldType&>(matcher))); // The call to MatcherCast() is required for supporting inner // matchers of compatible types. For example, it allows // Field(&Foo::bar, m) // to compile where bar is an int32 and m is a matcher for int64. } // Same as Field() but also takes the name of the field to provide better error // messages. template <typename Class, typename FieldType, typename FieldMatcher> inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( const std::string& field_name, FieldType Class::*field, const FieldMatcher& matcher) { return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( field_name, field, MatcherCast<const FieldType&>(matcher))); } // Creates a matcher that matches an object whose given property // matches 'matcher'. For example, // Property(&Foo::str, StartsWith("hi")) // matches a Foo object x iff x.str() starts with "hi". template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const> > Property(PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const>( property, MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); // The call to MatcherCast() is required for supporting inner // matchers of compatible types. For example, it allows // Property(&Foo::bar, m) // to compile where bar() returns an int32 and m is a matcher for int64. } // Same as Property() above, but also takes the name of the property to provide // better error messages. template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const> > Property(const std::string& property_name, PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const>( property_name, property, MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); } #if GTEST_LANG_CXX11 // The same as above but for reference-qualified member functions. template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const &> > Property(PropertyType (Class::*property)() const &, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const &>( property, MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); } // Three-argument form for reference-qualified member functions. template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const &> > Property(const std::string& property_name, PropertyType (Class::*property)() const &, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const &>( property_name, property, MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); } #endif // Creates a matcher that matches an object iff the result of applying // a callable to x matches 'matcher'. // For example, // ResultOf(f, StartsWith("hi")) // matches a Foo object x iff f(x) starts with "hi". // `callable` parameter can be a function, function pointer, or a functor. It is // required to keep no state affecting the results of the calls on it and make // no assumptions about how many calls will be made. Any state it keeps must be // protected from the concurrent access. template <typename Callable, typename InnerMatcher> internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( Callable callable, InnerMatcher matcher) { return internal::ResultOfMatcher<Callable, InnerMatcher>( internal::move(callable), internal::move(matcher)); } // String matchers. // Matches a string equal to str. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( const std::string& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::string>(str, true, true)); } // Matches a string not equal to str. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( const std::string& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::string>(str, false, true)); } // Matches a string equal to str, ignoring case. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( const std::string& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::string>(str, true, false)); } // Matches a string not equal to str, ignoring case. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( const std::string& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::string>(str, false, false)); } // Creates a matcher that matches any string, std::string, or C string // that contains the given substring. inline PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( const std::string& substring) { return MakePolymorphicMatcher( internal::HasSubstrMatcher<std::string>(substring)); } // Matches a string that starts with 'prefix' (case-sensitive). inline PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( const std::string& prefix) { return MakePolymorphicMatcher( internal::StartsWithMatcher<std::string>(prefix)); } // Matches a string that ends with 'suffix' (case-sensitive). inline PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( const std::string& suffix) { return MakePolymorphicMatcher(internal::EndsWithMatcher<std::string>(suffix)); } // Matches a string that fully matches regular expression 'regex'. // The matcher takes ownership of 'regex'. inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( const internal::RE* regex) { return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true)); } inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( const std::string& regex) { return MatchesRegex(new internal::RE(regex)); } // Matches a string that contains regular expression 'regex'. // The matcher takes ownership of 'regex'. inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( const internal::RE* regex) { return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false)); } inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( const std::string& regex) { return ContainsRegex(new internal::RE(regex)); } #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING // Wide string matchers. // Matches a string equal to str. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, true, true)); } // Matches a string not equal to str. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, false, true)); } // Matches a string equal to str, ignoring case. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrCaseEq(const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, true, false)); } // Matches a string not equal to str, ignoring case. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrCaseNe(const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, false, false)); } // Creates a matcher that matches any ::wstring, std::wstring, or C wide string // that contains the given substring. inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( const std::wstring& substring) { return MakePolymorphicMatcher( internal::HasSubstrMatcher<std::wstring>(substring)); } // Matches a string that starts with 'prefix' (case-sensitive). inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > StartsWith(const std::wstring& prefix) { return MakePolymorphicMatcher( internal::StartsWithMatcher<std::wstring>(prefix)); } // Matches a string that ends with 'suffix' (case-sensitive). inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( const std::wstring& suffix) { return MakePolymorphicMatcher( internal::EndsWithMatcher<std::wstring>(suffix)); } #endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING // Creates a polymorphic matcher that matches a 2-tuple where the // first field == the second field. inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field >= the second field. inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field > the second field. inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field <= the second field. inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field < the second field. inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field != the second field. inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where // FloatEq(first field) matches the second field. inline internal::FloatingEq2Matcher<float> FloatEq() { return internal::FloatingEq2Matcher<float>(); } // Creates a polymorphic matcher that matches a 2-tuple where // DoubleEq(first field) matches the second field. inline internal::FloatingEq2Matcher<double> DoubleEq() { return internal::FloatingEq2Matcher<double>(); } // Creates a polymorphic matcher that matches a 2-tuple where // FloatEq(first field) matches the second field with NaN equality. inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { return internal::FloatingEq2Matcher<float>(true); } // Creates a polymorphic matcher that matches a 2-tuple where // DoubleEq(first field) matches the second field with NaN equality. inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { return internal::FloatingEq2Matcher<double>(true); } // Creates a polymorphic matcher that matches a 2-tuple where // FloatNear(first field, max_abs_error) matches the second field. inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { return internal::FloatingEq2Matcher<float>(max_abs_error); } // Creates a polymorphic matcher that matches a 2-tuple where // DoubleNear(first field, max_abs_error) matches the second field. inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { return internal::FloatingEq2Matcher<double>(max_abs_error); } // Creates a polymorphic matcher that matches a 2-tuple where // FloatNear(first field, max_abs_error) matches the second field with NaN // equality. inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( float max_abs_error) { return internal::FloatingEq2Matcher<float>(max_abs_error, true); } // Creates a polymorphic matcher that matches a 2-tuple where // DoubleNear(first field, max_abs_error) matches the second field with NaN // equality. inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( double max_abs_error) { return internal::FloatingEq2Matcher<double>(max_abs_error, true); } // Creates a matcher that matches any value of type T that m doesn't // match. template <typename InnerMatcher> inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { return internal::NotMatcher<InnerMatcher>(m); } // Returns a matcher that matches anything that satisfies the given // predicate. The predicate can be any unary function or functor // whose return type can be implicitly converted to bool. template <typename Predicate> inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > Truly(Predicate pred) { return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); } // Returns a matcher that matches the container size. The container must // support both size() and size_type which all STL-like containers provide. // Note that the parameter 'size' can be a value of type size_type as well as // matcher. For instance: // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. template <typename SizeMatcher> inline internal::SizeIsMatcher<SizeMatcher> SizeIs(const SizeMatcher& size_matcher) { return internal::SizeIsMatcher<SizeMatcher>(size_matcher); } // Returns a matcher that matches the distance between the container's begin() // iterator and its end() iterator, i.e. the size of the container. This matcher // can be used instead of SizeIs with containers such as std::forward_list which // do not implement size(). The container must provide const_iterator (with // valid iterator_traits), begin() and end(). template <typename DistanceMatcher> inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); } // Returns a matcher that matches an equal container. // This matcher behaves like Eq(), but in the event of mismatch lists the // values that are included in one container but not the other. (Duplicate // values and order differences are not explained.) template <typename Container> inline PolymorphicMatcher<internal::ContainerEqMatcher< // NOLINT GTEST_REMOVE_CONST_(Container)> > ContainerEq(const Container& rhs) { // This following line is for working around a bug in MSVC 8.0, // which causes Container to be a const type sometimes. typedef GTEST_REMOVE_CONST_(Container) RawContainer; return MakePolymorphicMatcher( internal::ContainerEqMatcher<RawContainer>(rhs)); } // Returns a matcher that matches a container that, when sorted using // the given comparator, matches container_matcher. template <typename Comparator, typename ContainerMatcher> inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(const Comparator& comparator, const ContainerMatcher& container_matcher) { return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( comparator, container_matcher); } // Returns a matcher that matches a container that, when sorted using // the < operator, matches container_matcher. template <typename ContainerMatcher> inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> WhenSorted(const ContainerMatcher& container_matcher) { return internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( internal::LessComparator(), container_matcher); } // Matches an STL-style container or a native array that contains the // same number of elements as in rhs, where its i-th element and rhs's // i-th element (as a pair) satisfy the given pair matcher, for all i. // TupleMatcher must be able to be safely cast to Matcher<tuple<const // T1&, const T2&> >, where T1 and T2 are the types of elements in the // LHS container and the RHS container respectively. template <typename TupleMatcher, typename Container> inline internal::PointwiseMatcher<TupleMatcher, GTEST_REMOVE_CONST_(Container)> Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { // This following line is for working around a bug in MSVC 8.0, // which causes Container to be a const type sometimes (e.g. when // rhs is a const int[]).. typedef GTEST_REMOVE_CONST_(Container) RawContainer; return internal::PointwiseMatcher<TupleMatcher, RawContainer>( tuple_matcher, rhs); } #if GTEST_HAS_STD_INITIALIZER_LIST_ // Supports the Pointwise(m, {a, b, c}) syntax. template <typename TupleMatcher, typename T> inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { return Pointwise(tuple_matcher, std::vector<T>(rhs)); } #endif // GTEST_HAS_STD_INITIALIZER_LIST_ // UnorderedPointwise(pair_matcher, rhs) matches an STL-style // container or a native array that contains the same number of // elements as in rhs, where in some permutation of the container, its // i-th element and rhs's i-th element (as a pair) satisfy the given // pair matcher, for all i. Tuple2Matcher must be able to be safely // cast to Matcher<tuple<const T1&, const T2&> >, where T1 and T2 are // the types of elements in the LHS container and the RHS container // respectively. // // This is like Pointwise(pair_matcher, rhs), except that the element // order doesn't matter. template <typename Tuple2Matcher, typename RhsContainer> inline internal::UnorderedElementsAreArrayMatcher< typename internal::BoundSecondMatcher< Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_( RhsContainer)>::type::value_type> > UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, const RhsContainer& rhs_container) { // This following line is for working around a bug in MSVC 8.0, // which causes RhsContainer to be a const type sometimes (e.g. when // rhs_container is a const int[]). typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer; // RhsView allows the same code to handle RhsContainer being a // STL-style container and it being a native C-style array. typedef typename internal::StlContainerView<RawRhsContainer> RhsView; typedef typename RhsView::type RhsStlContainer; typedef typename RhsStlContainer::value_type Second; const RhsStlContainer& rhs_stl_container = RhsView::ConstReference(rhs_container); // Create a matcher for each element in rhs_container. ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); it != rhs_stl_container.end(); ++it) { matchers.push_back( internal::MatcherBindSecond(tuple2_matcher, *it)); } // Delegate the work to UnorderedElementsAreArray(). return UnorderedElementsAreArray(matchers); } #if GTEST_HAS_STD_INITIALIZER_LIST_ // Supports the UnorderedPointwise(m, {a, b, c}) syntax. template <typename Tuple2Matcher, typename T> inline internal::UnorderedElementsAreArrayMatcher< typename internal::BoundSecondMatcher<Tuple2Matcher, T> > UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, std::initializer_list<T> rhs) { return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); } #endif // GTEST_HAS_STD_INITIALIZER_LIST_ // Matches an STL-style container or a native array that contains at // least one element matching the given value or matcher. // // Examples: // ::std::set<int> page_ids; // page_ids.insert(3); // page_ids.insert(1); // EXPECT_THAT(page_ids, Contains(1)); // EXPECT_THAT(page_ids, Contains(Gt(2))); // EXPECT_THAT(page_ids, Not(Contains(4))); // // ::std::map<int, size_t> page_lengths; // page_lengths[1] = 100; // EXPECT_THAT(page_lengths, // Contains(::std::pair<const int, size_t>(1, 100))); // // const char* user_ids[] = { "joe", "mike", "tom" }; // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); template <typename M> inline internal::ContainsMatcher<M> Contains(M matcher) { return internal::ContainsMatcher<M>(matcher); } // IsSupersetOf(iterator_first, iterator_last) // IsSupersetOf(pointer, count) // IsSupersetOf(array) // IsSupersetOf(container) // IsSupersetOf({e1, e2, ..., en}) // // IsSupersetOf() verifies that a surjective partial mapping onto a collection // of matchers exists. In other words, a container matches // IsSupersetOf({e1, ..., en}) if and only if there is a permutation // {y1, ..., yn} of some of the container's elements where y1 matches e1, // ..., and yn matches en. Obviously, the size of the container must be >= n // in order to have a match. Examples: // // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and // 1 matches Ne(0). // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches // both Eq(1) and Lt(2). The reason is that different matchers must be used // for elements in different slots of the container. // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches // Eq(1) and (the second) 1 matches Lt(2). // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) // Gt(1) and 3 matches (the second) Gt(1). // // The matchers can be specified as an array, a pointer and count, a container, // an initializer list, or an STL iterator range. In each of these cases, the // underlying matchers can be either values or matchers. template <typename Iter> inline internal::UnorderedElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> IsSupersetOf(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::UnorderedElementsAreArrayMatcher<T>( internal::UnorderedMatcherRequire::Superset, first, last); } template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( const T* pointer, size_t count) { return IsSupersetOf(pointer, pointer + count); } template <typename T, size_t N> inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( const T (&array)[N]) { return IsSupersetOf(array, N); } template <typename Container> inline internal::UnorderedElementsAreArrayMatcher< typename Container::value_type> IsSupersetOf(const Container& container) { return IsSupersetOf(container.begin(), container.end()); } #if GTEST_HAS_STD_INITIALIZER_LIST_ template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( ::std::initializer_list<T> xs) { return IsSupersetOf(xs.begin(), xs.end()); } #endif // IsSubsetOf(iterator_first, iterator_last) // IsSubsetOf(pointer, count) // IsSubsetOf(array) // IsSubsetOf(container) // IsSubsetOf({e1, e2, ..., en}) // // IsSubsetOf() verifies that an injective mapping onto a collection of matchers // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and // only if there is a subset of matchers {m1, ..., mk} which would match the // container using UnorderedElementsAre. Obviously, the size of the container // must be <= n in order to have a match. Examples: // // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 // matches Lt(0). // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both // match Gt(0). The reason is that different matchers must be used for // elements in different slots of the container. // // The matchers can be specified as an array, a pointer and count, a container, // an initializer list, or an STL iterator range. In each of these cases, the // underlying matchers can be either values or matchers. template <typename Iter> inline internal::UnorderedElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> IsSubsetOf(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::UnorderedElementsAreArrayMatcher<T>( internal::UnorderedMatcherRequire::Subset, first, last); } template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( const T* pointer, size_t count) { return IsSubsetOf(pointer, pointer + count); } template <typename T, size_t N> inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( const T (&array)[N]) { return IsSubsetOf(array, N); } template <typename Container> inline internal::UnorderedElementsAreArrayMatcher< typename Container::value_type> IsSubsetOf(const Container& container) { return IsSubsetOf(container.begin(), container.end()); } #if GTEST_HAS_STD_INITIALIZER_LIST_ template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( ::std::initializer_list<T> xs) { return IsSubsetOf(xs.begin(), xs.end()); } #endif // Matches an STL-style container or a native array that contains only // elements matching the given value or matcher. // // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only // the messages are different. // // Examples: // ::std::set<int> page_ids; // // Each(m) matches an empty container, regardless of what m is. // EXPECT_THAT(page_ids, Each(Eq(1))); // EXPECT_THAT(page_ids, Each(Eq(77))); // // page_ids.insert(3); // EXPECT_THAT(page_ids, Each(Gt(0))); // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); // page_ids.insert(1); // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); // // ::std::map<int, size_t> page_lengths; // page_lengths[1] = 100; // page_lengths[2] = 200; // page_lengths[3] = 300; // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); // // const char* user_ids[] = { "joe", "mike", "tom" }; // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); template <typename M> inline internal::EachMatcher<M> Each(M matcher) { return internal::EachMatcher<M>(matcher); } // Key(inner_matcher) matches an std::pair whose 'first' field matches // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an // std::map that contains at least one element whose key is >= 5. template <typename M> inline internal::KeyMatcher<M> Key(M inner_matcher) { return internal::KeyMatcher<M>(inner_matcher); } // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field // matches first_matcher and whose 'second' field matches second_matcher. For // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used // to match a std::map<int, string> that contains exactly one element whose key // is >= 5 and whose value equals "foo". template <typename FirstMatcher, typename SecondMatcher> inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { return internal::PairMatcher<FirstMatcher, SecondMatcher>( first_matcher, second_matcher); } // Returns a predicate that is satisfied by anything that matches the // given matcher. template <typename M> inline internal::MatcherAsPredicate<M> Matches(M matcher) { return internal::MatcherAsPredicate<M>(matcher); } // Returns true iff the value matches the matcher. template <typename T, typename M> inline bool Value(const T& value, M matcher) { return testing::Matches(matcher)(value); } // Matches the value against the given matcher and explains the match // result to listener. template <typename T, typename M> inline bool ExplainMatchResult( M matcher, const T& value, MatchResultListener* listener) { return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); } // Returns a string representation of the given matcher. Useful for description // strings of matchers defined using MATCHER_P* macros that accept matchers as // their arguments. For example: // // MATCHER_P(XAndYThat, matcher, // "X that " + DescribeMatcher<int>(matcher, negation) + // " and Y that " + DescribeMatcher<double>(matcher, negation)) { // return ExplainMatchResult(matcher, arg.x(), result_listener) && // ExplainMatchResult(matcher, arg.y(), result_listener); // } template <typename T, typename M> std::string DescribeMatcher(const M& matcher, bool negation = false) { ::std::stringstream ss; Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); if (negation) { monomorphic_matcher.DescribeNegationTo(&ss); } else { monomorphic_matcher.DescribeTo(&ss); } return ss.str(); } #if GTEST_LANG_CXX11 // Define variadic matcher versions. They are overloaded in // gmock-generated-matchers.h for the cases supported by pre C++11 compilers. template <typename... Args> internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( const Args&... matchers) { return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( matchers...); } template <typename... Args> internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( const Args&... matchers) { return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( matchers...); } template <typename... Args> internal::ElementsAreMatcher<tuple<typename std::decay<const Args&>::type...>> ElementsAre(const Args&... matchers) { return internal::ElementsAreMatcher< tuple<typename std::decay<const Args&>::type...>>( make_tuple(matchers...)); } template <typename... Args> internal::UnorderedElementsAreMatcher< tuple<typename std::decay<const Args&>::type...>> UnorderedElementsAre(const Args&... matchers) { return internal::UnorderedElementsAreMatcher< tuple<typename std::decay<const Args&>::type...>>( make_tuple(matchers...)); } #endif // GTEST_LANG_CXX11 // AllArgs(m) is a synonym of m. This is useful in // // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); // // which is easier to read than // // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); template <typename InnerMatcher> inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } // Returns a matcher that matches the value of an optional<> type variable. // The matcher implementation only uses '!arg' and requires that the optional<> // type has a 'value_type' member type and that '*arg' is of type 'value_type' // and is printable using 'PrintToString'. It is compatible with // std::optional/std::experimental::optional. // Note that to compare an optional type variable against nullopt you should // use Eq(nullopt) and not Optional(Eq(nullopt)). The latter implies that the // optional value contains an optional itself. template <typename ValueMatcher> inline internal::OptionalMatcher<ValueMatcher> Optional( const ValueMatcher& value_matcher) { return internal::OptionalMatcher<ValueMatcher>(value_matcher); } // Returns a matcher that matches the value of a absl::any type variable. template <typename T> PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( const Matcher<const T&>& matcher) { return MakePolymorphicMatcher( internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); } // Returns a matcher that matches the value of a variant<> type variable. // The matcher implementation uses ADL to find the holds_alternative and get // functions. // It is compatible with std::variant. template <typename T> PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( const Matcher<const T&>& matcher) { return MakePolymorphicMatcher( internal::variant_matcher::VariantMatcher<T>(matcher)); } // These macros allow using matchers to check values in Google Test // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) // succeed iff the value matches the matcher. If the assertion fails, // the value and the description of the matcher will be printed. #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 // Include any custom callback matchers added by the local installation. // We must include this header at the end to make sure it can use the // declarations from this file. #include "gmock/internal/custom/gmock-matchers.h" #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_