summaryrefslogtreecommitdiffhomepage
path: root/intel.cpp
diff options
context:
space:
mode:
authorRoland Reichwein <mail@reichwein.it>2020-10-11 14:25:23 +0200
committerRoland Reichwein <mail@reichwein.it>2020-10-11 14:25:23 +0200
commitefbbad04bc093a133ca2aa5a462de0d37b04f929 (patch)
tree8dc39bee70cd40a03e844b47303528bc63ffbe24 /intel.cpp
parent0c5a5a94dab6d19192946f0a57d920628823ece1 (diff)
Added COFF, Intel ASM
Diffstat (limited to 'intel.cpp')
-rw-r--r--intel.cpp503
1 files changed, 503 insertions, 0 deletions
diff --git a/intel.cpp b/intel.cpp
new file mode 100644
index 0000000..dfcaa75
--- /dev/null
+++ b/intel.cpp
@@ -0,0 +1,503 @@
+// Intel assembly language
+
+
+// segments: code, stack
+
+#include "minicc.h"
+
+#include <algorithm>
+#include <array>
+#include <deque>
+#include <functional>
+#include <stdexcept>
+#include <functional>
+#include <stdexcept>
+#include <string>
+#include <unordered_map>
+#include <vector>
+
+using namespace std::string_literals;
+using namespace std::placeholders;
+
+namespace {
+
+ // binary code operators
+ std::vector<uint8_t> operator+(std::vector<uint8_t> a, const std::vector<uint8_t>& b) {
+ a.insert(a.end(), b.begin(), b.end());
+ return a;
+ }
+
+ std::vector<uint8_t> operator+(std::vector<uint8_t> a, const uint8_t& b) {
+ a.push_back(b);
+ return a;
+ }
+
+ // REX prefix: 0b0100WRXB
+ std::vector<uint8_t> REX(std::string s) {
+ uint8_t result{0b01000000};
+ if (s == "W")
+ result |= 0b00001000;
+ if (s == "R")
+ result |= 0b00000100;
+ if (s == "X")
+ result |= 0b00000010;
+ if (s == "B")
+ result |= 0b00000001;
+
+ return { result };
+ }
+
+ std::vector<uint8_t> imm8(std::string s) {
+ long value{ std::stol(s) };
+ uint8_t* bin = reinterpret_cast<uint8_t*>(&value);
+ return { uint8_t(*bin & 0xFF) };
+ }
+
+ std::vector<uint8_t> imm32(std::string s) {
+ long value{ std::stol(s) };
+ uint32_t* bin = reinterpret_cast<uint32_t*>(&value);
+ return {uint8_t(*bin & 0xFF), uint8_t(*bin >> 8 & 0xFF), uint8_t(*bin >> 16 & 0xFF), uint8_t(*bin >> 24 & 0xFF) };
+ }
+
+ std::unordered_map<std::string, size_t> IndexOfRegister{
+ {"al", 0}, {"ah", 4},
+ {"bl", 3}, {"bh", 7},
+ {"cl", 1}, {"ch", 5},
+ {"dl", 2}, {"dh", 6},
+
+ {"ax", 0}, {"sp", 4},
+ {"bx", 3}, {"bp", 7},
+ {"cx", 1}, {"si", 5},
+ {"dx", 2}, {"di", 6},
+
+ {"eax", 0}, {"esp", 4},
+ {"ebx", 3}, {"ebp", 7},
+ {"ecx", 1}, {"esi", 5},
+ {"edx", 2}, {"edi", 6},
+ };
+
+ // Manual, page 530
+ // Reg + Reg/Memory
+ uint8_t ModRM(std::string reg, std::string rm) {
+ // TODO: extend
+ uint8_t result{0b11000000};
+
+ auto index1{ IndexOfRegister.find(reg) };
+ if (index1 == IndexOfRegister.end())
+ throw std::runtime_error("Unknown register for arg1: "s + reg);
+
+ result |= (index1->second << 3);
+
+ auto index2{ IndexOfRegister.find(rm) };
+ if (index2 == IndexOfRegister.end())
+ throw std::runtime_error("Unknown register for arg2: "s + rm);
+
+ result |= index2->second;
+
+ return result;
+ }
+
+ enum class AddressType {
+ Relative8,
+ Relative16,
+ Relative32,
+ Absolute8,
+ Absolute16,
+ Absolute32,
+ };
+
+ struct Address
+ {
+ AddressType type;
+ size_t position; // relative to respective machine code, e.g. byte 1 in jump
+ std::string label; // where to jump to, as label
+ };
+
+ struct InstructionCode
+ {
+ std::vector<uint8_t> machine_code;
+ std::vector<Address> addresses;
+ };
+
+ // List of alternative codes
+ typedef std::deque<InstructionCode> InstructionCodeList;
+
+ bool O1{ true }; // Optimization
+
+ using OP_T = std::vector<uint8_t>;
+
+ InstructionCodeList op_jmp(const std::vector<Token>& sl, std::vector<uint8_t> op_bytes_8, std::vector<uint8_t> op_bytes_32)
+ {
+ if (sl.size() == 2) { // JMP rel8 / rel32
+ const std::string& label{ sl[1].value };
+ InstructionCodeList result;
+ if (op_bytes_32.size() > 0) {
+ op_bytes_32.resize(op_bytes_32.size() + 4, 0x00);
+ result.push_back({ op_bytes_32, { {AddressType::Relative32, op_bytes_32.size() - 4, label} } } );
+ }
+ if (op_bytes_8.size() > 0 && (O1 || op_bytes_32.size() == 0)) {
+ op_bytes_8.push_back(0x00);
+ result.push_back({ op_bytes_8, { {AddressType::Relative8, op_bytes_8.size() - 1, label} } });
+ }
+ return result;
+ }
+
+ // ... TODO
+ throw std::runtime_error("Unknown command: "s + sl[0].value);
+ }
+
+ std::unordered_map<std::string, std::function<InstructionCodeList(const std::vector<Token>&)>> ops{
+
+ // Integer Addition
+ {"add", [](const std::vector<Token>& sl) -> InstructionCodeList {
+ if (sl.size() == 3) {
+ if (sl[1].value == "eax") { // ADD EAX, imm32
+ return { { std::vector<uint8_t>{ 0x05 } +imm32(sl[2].value), {} } };
+ } else if (sl[1].value == "rax") { // ADD RAX, imm32
+ return { { REX("W") + std::vector<uint8_t>{ 0x05 } +imm32(sl[2].value), {} } };
+ }
+ }
+
+ // ... TODO
+ throw std::runtime_error("Unknown command: "s + sl[0].value);
+ }},
+
+ // Call Procedure
+ {"call", std::bind(op_jmp, _1, OP_T{}, OP_T{ 0xE8 })},
+
+ // Interrupt
+ {"int", [](const std::vector<Token>& sl) -> InstructionCodeList {
+ if (sl.size() == 2) {
+ if (sl[1].value == "0") { // INT 0
+ return { { std::vector<uint8_t>{ 0xCE }} };
+ } else if (sl[1].value == "1") { // INT 1
+ return { { std::vector<uint8_t>{ 0xF1 }} };
+ } else if (sl[1].value == "3") { // INT 3
+ return { { std::vector<uint8_t>{ 0xCC }} };
+ } else { // INT <...>
+ return { { std::vector<uint8_t>{ 0xCD } +imm8(sl[2].value) } };
+ }
+ }
+
+ // ... TODO
+ throw std::runtime_error("Unknown command: "s + sl[0].value);
+ }},
+
+ // Unconditional Jump
+ {"jmp", std::bind(op_jmp, _1, OP_T{ 0xEB }, OP_T{ 0xE9 })},
+
+ // Conditional Jumps
+ {"ja", std::bind(op_jmp, _1, OP_T{ 0x77 }, OP_T{ 0x0F, 0x87 })},
+ {"jae", std::bind(op_jmp, _1, OP_T{ 0x73 }, OP_T{ 0x0F, 0x83 })},
+ {"jb", std::bind(op_jmp, _1, OP_T{ 0x72 }, OP_T{ 0x0F, 0x82 })},
+ {"jbe", std::bind(op_jmp, _1, OP_T{ 0x76 }, OP_T{ 0x0F, 0x86 })},
+ {"jc", std::bind(op_jmp, _1, OP_T{ 0x72 }, OP_T{ 0x0F, 0x82 })},
+ {"jecxz", std::bind(op_jmp, _1, OP_T{ 0xE3 }, OP_T{})},
+ {"jrcxz", std::bind(op_jmp, _1, OP_T{ 0xE3 }, OP_T{})},
+ {"je", std::bind(op_jmp, _1, OP_T{ 0x74 }, OP_T{ 0x0F, 0x84 })},
+ {"jg", std::bind(op_jmp, _1, OP_T{ 0x7F }, OP_T{ 0x0F, 0x8F })},
+ {"jge", std::bind(op_jmp, _1, OP_T{ 0x7D }, OP_T{ 0x0F, 0x8D })},
+ {"jl", std::bind(op_jmp, _1, OP_T{ 0x7C }, OP_T{ 0x0F, 0x8C })},
+ {"jle", std::bind(op_jmp, _1, OP_T{ 0x7E }, OP_T{ 0x0F, 0x8E })},
+ {"jna", std::bind(op_jmp, _1, OP_T{ 0x76 }, OP_T{ 0x0F, 0x86 })},
+ {"jnae", std::bind(op_jmp, _1, OP_T{ 0x72 }, OP_T{ 0x0F, 0x82 })},
+ {"jnb", std::bind(op_jmp, _1, OP_T{ 0x73 }, OP_T{ 0x0F, 0x83 })},
+ {"jnbe", std::bind(op_jmp, _1, OP_T{ 0x77 }, OP_T{ 0x0F, 0x87 })},
+ {"jnc", std::bind(op_jmp, _1, OP_T{ 0x73 }, OP_T{ 0x0F, 0x83 })},
+ {"jne", std::bind(op_jmp, _1, OP_T{ 0x75 }, OP_T{ 0x0F, 0x85 })},
+ {"jng", std::bind(op_jmp, _1, OP_T{ 0x7E }, OP_T{ 0x0F, 0x8E })},
+ {"jnge", std::bind(op_jmp, _1, OP_T{ 0x7C }, OP_T{ 0x0F, 0x8C })},
+ {"jnl", std::bind(op_jmp, _1, OP_T{ 0x7D }, OP_T{ 0x0F, 0x8D })},
+ {"jnle", std::bind(op_jmp, _1, OP_T{ 0x7F }, OP_T{ 0x0F, 0x8F })},
+ {"jno", std::bind(op_jmp, _1, OP_T{ 0x71 }, OP_T{ 0x0F, 0x81 })},
+ {"jnp", std::bind(op_jmp, _1, OP_T{ 0x7B }, OP_T{ 0x0F, 0x8B })},
+ {"jns", std::bind(op_jmp, _1, OP_T{ 0x79 }, OP_T{ 0x0F, 0x89 })},
+ {"jnz", std::bind(op_jmp, _1, OP_T{ 0x75 }, OP_T{ 0x0F, 0x85 })},
+ {"jo", std::bind(op_jmp, _1, OP_T{ 0x70 }, OP_T{ 0x0F, 0x80 })},
+ {"jp", std::bind(op_jmp, _1, OP_T{ 0x7A }, OP_T{ 0x0F, 0x8A })},
+ {"jpe", std::bind(op_jmp, _1, OP_T{ 0x7A }, OP_T{ 0x0F, 0x8A })},
+ {"jpo", std::bind(op_jmp, _1, OP_T{ 0x7B }, OP_T{ 0x0F, 0x8B })},
+ {"js", std::bind(op_jmp, _1, OP_T{ 0x78 }, OP_T{ 0x0F, 0x88 })},
+ {"jz", std::bind(op_jmp, _1, OP_T{ 0x74 }, OP_T{ 0x0F, 0x84 })},
+
+ // Memory Move
+ { "mov", [](const std::vector<Token>& sl) -> InstructionCodeList {
+ if (sl.size() == 3) {
+ return { { std::vector<uint8_t>{ 0x88 } + ModRM(sl[2].value, sl[1].value), {} } }; // r/m8, r8: ModRM:r/m (w), ModRM:reg (r)
+ }
+
+ // ... TODO
+ throw std::runtime_error("Unknown command: "s + sl[0].value);
+ }},
+
+ // No Operation
+ { "nop", [](const std::vector<Token>& sl) -> InstructionCodeList {
+ return {{ std::vector<uint8_t>{ 0x90 }, {}}};
+ }},
+
+ // Return from procedure
+ { "ret", [](const std::vector<Token>& sl) -> InstructionCodeList {
+ return {{ std::vector<uint8_t>{ 0xC3 }, {}}}; // near return; TODO: far return is 0xCB
+ }},
+
+ { "xor", [](const std::vector<Token>& sl) -> InstructionCodeList {
+ if (sl.size() == 3) {
+ return { { std::vector<uint8_t>{ 0x33 } + ModRM(sl[1].value, sl[2].value) } }; // r8, r/m8: ModRM:reg (w), ModRM:r/m (r)
+ }
+
+ // ... TODO
+ throw std::runtime_error("Unknown command: "s + sl[0].value);
+ }},
+
+ };
+
+#if 0
+ prefixes{
+ "lock", 0xf0,
+
+ // branch hint
+ 0x2e, "branch not taken"
+ 0x3e, "branch taken"
+
+ 0x66, "operand size override" // switch between 16 and 32 bit operands
+ 0x67, "address size override" // switch between 16 and 32 bit addresses
+ };
+ };
+#endif
+
+#ifdef ASM_PARSER
+ BNF GetBNF() {
+ // TODO:
+ return {
+ { "assembler-unit", {
+ {}
+ }},
+ { "immediate-32", {
+ {}
+ }},
+ { "mnemonic", {
+ {}
+ }},
+ { "register", {
+ {}
+ }},
+ { "register-8", {
+ {}
+ }},
+ { "register-16", {
+ {}
+ }},
+ { "register-32", {
+ {}
+ }},
+ { "register-64", {
+ {}
+ }},
+
+ };
+ };
+#endif
+
+ // Checks a 32 bit relative address if it's valid as 8 bit address
+ bool IsSmallAddress(const InstructionCode& insn) {
+ if (insn.addresses.size() != 1)
+ throw std::runtime_error("Bad number of addresses in insn");
+
+ size_t i{insn.addresses[0].position};
+
+ if (i > insn.machine_code.size() - 3)
+ throw std::runtime_error("Bad Address index "s + std::to_string(i) + " in insn with "s + std::to_string(insn.machine_code.size()) + " bytes"s);
+
+ if (std::count(insn.machine_code.begin() + i, insn.machine_code.begin() + i + 3, 0x00) == 3 ||
+ std::count(insn.machine_code.begin() + i, insn.machine_code.begin() + i + 3, 0xFF) == 3)
+ return true;
+
+ return false;
+ }
+
+
+} // namespace
+
+class Assembler {
+
+ std::unordered_map<std::string, size_t> labels; ///< labels with their positions in instruction list
+
+ /// 1st Level: Instructions
+ /// 2nd Level: Alternatives
+ /// 3rd Level: Bytes of single instruction
+ std::vector<InstructionCodeList> insn_list;
+
+ uint64_t addressFromInstructionIndex(size_t index)
+ {
+ // TODO: cache this to prevent repetitive summing
+
+ if (index > insn_list.size())
+ throw std::runtime_error("Index "s + std::to_string(index) + " out of range ("s + std::to_string(insn_list.size()) + ")"s);
+
+ uint64_t sum{};
+
+ for (size_t i = 0; i < index; i++) {
+ if (insn_list[i].size() < 1) {
+ throw std::runtime_error("Insufficient alternatives at index "s + std::to_string(i));
+ }
+
+ sum += static_cast<uint64_t>(insn_list[i][0].machine_code.size());
+ }
+
+ return sum;
+ }
+
+ uint64_t addressFromLabel(std::string label)
+ {
+ auto it{ labels.find(label) };
+ if (it == labels.end())
+ throw std::runtime_error("Label not found: "s + label);
+
+ return addressFromInstructionIndex(it->second);
+ }
+
+ std::unordered_map<AddressType, std::function<void(std::vector<uint8_t>&, const Address&, uint64_t)>> addressInserters{
+ {AddressType::Relative8, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address)
+ {
+ int64_t difference = static_cast<int64_t>(addressFromLabel(target_address.label)) - insn_address;
+ if (difference < -128 || difference > 127)
+ throw std::runtime_error("Distance too big");
+
+ int8_t diff8 = static_cast<int8_t>(difference);
+ uint8_t diff_u8 = *reinterpret_cast<uint8_t*>(&diff8);
+
+ machine_code[target_address.position] = diff_u8;
+ }
+ },
+ {AddressType::Relative16, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) { throw std::runtime_error("Relative16 Address not yet supported."); }},
+ {AddressType::Relative32, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address)
+ {
+ int64_t difference = static_cast<int64_t>(addressFromLabel(target_address.label)) - insn_address;
+ if (difference < -4294967296 || difference > 4294967295)
+ throw std::runtime_error("Distance too big");
+
+ int32_t diff32 = static_cast<int32_t>(difference);
+ uint32_t diff_u32 = *reinterpret_cast<uint32_t*>(&diff32);
+
+ machine_code[target_address.position] = diff_u32 & 0xFF; // little endian
+ machine_code[target_address.position + 1] = diff_u32 >> 8 & 0xFF;
+ machine_code[target_address.position + 2] = diff_u32 >> 16 & 0xFF;
+ machine_code[target_address.position + 3] = diff_u32 >> 24 & 0xFF;
+ }
+ },
+ {AddressType::Absolute8, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) {throw std::runtime_error("Absolute8 Address not yet supported."); }},
+ {AddressType::Absolute16, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) {throw std::runtime_error("Absolute16 Address not yet supported."); }},
+ {AddressType::Absolute32, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) {throw std::runtime_error("Absolute32 Address not yet supported."); }},
+ };
+
+ void produce_machine_code(std::vector<std::vector<Token>>& tl)
+ {
+ for (const auto& t : tl) {
+ // label:
+ // label: mnemonic arg1, arg2, arg3
+ // mnemonic arg1, arg2, arg3
+
+ if (t.size() == 2 && t[0].type == "label" && t[1].type == ":") { // label
+ if (labels.find(t[0].value) != labels.end())
+ throw std::runtime_error("Label already defined: "s + t[0].value);
+
+ labels[t[0].value] = insn_list.size();
+ } else if (t.size() >= 1 && t[0].type == "instruction") { // instruction
+ std::string instruction{ t[0].value };
+ auto it = ops.find(instruction);
+ if (it == ops.end())
+ throw std::runtime_error("Unknown instruction: "s + instruction);
+
+ InstructionCodeList codes = it->second(t);
+
+ if (codes.size() == 0)
+ throw std::runtime_error("No instruction generated");
+
+ insn_list.push_back(codes);
+
+ } else
+ throw std::runtime_error("Syntax error"s);
+ }
+ }
+
+ void insert_addresses()
+ {
+ for (size_t i = 0; i < insn_list.size(); i++) {
+ InstructionCodeList& list{ insn_list[i] };
+ if (list.size() == 0)
+ throw std::runtime_error("No instruction at index "s + std::to_string(i));
+
+ InstructionCode& code{ list[0] };
+
+ for (const auto& address : code.addresses) {
+ addressInserters[address.type](code.machine_code, address, addressFromInstructionIndex(i));
+ }
+ }
+ }
+
+ void optimize()
+ {
+ // reduce Jump sizes via alternatives if possible
+ bool changed{};
+ do {
+ changed = false;
+
+ for (size_t i = 0; i < insn_list.size(); i++) {
+ InstructionCodeList& list{ insn_list[i] }; // Alternatives
+
+ // apply specific heuristics to optimization case
+ if (list.size() == 2) {
+ if (list[0].addresses.size() == 1 && list[1].addresses.size() == 1) {
+ if (list[0].addresses[0].type == AddressType::Relative32 && list[1].addresses[0].type == AddressType::Relative8) {
+ if (IsSmallAddress(list[0])) {
+ list.pop_front();
+ break; // start over from start of program
+ }
+ }
+ }
+ }
+ }
+
+ if (changed)
+ insert_addresses(); // update
+
+ } while (changed);
+ }
+
+ std::vector<uint8_t> collect_code()
+ {
+ std::vector<uint8_t> result;
+
+ // collect generated machine instructions for result
+ // Alternatives already resolved, if configured. Consider only 1st entry (no matter if optimized or not).
+ for (size_t i = 0; i < insn_list.size(); i++) {
+ InstructionCodeList& list{ insn_list[i] };
+ if (list.size() == 0)
+ throw std::runtime_error("No instruction at index "s + std::to_string(i));
+
+ InstructionCode& code{ list[0] };
+
+ result.insert(result.end(), code.machine_code.begin(), code.machine_code.end());
+ }
+
+ return result;
+ }
+
+public:
+ Assembler() {}
+
+ std::vector<uint8_t> assemble(std::vector<std::vector<Token>> tl)
+ {
+ labels.clear();
+ insn_list.clear();
+
+ produce_machine_code(tl); // 1st pass
+ insert_addresses(); // 2nd pass
+ if (O1) {
+ optimize(); // 3rd pass
+ }
+
+ return collect_code(); // 4th pass
+ }
+
+}; // class Assembler