1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
#include "grammer.h"
#include "debug.h"
#include <algorithm>
#include <limits>
using namespace Gram;
void Compiler::clear()
{
symbol_variants.clear();
nodes.clear();
}
std::string Compiler::GetTypeOfNode(index_t node_id) const
{
if (node_id >= nodes.size())
throw std::runtime_error("GetTypeOfNode(): node_id="s + std::to_string(node_id) + ", nodes.size()="s + std::to_string(nodes.size()));
return nodes[node_id].type;
}
bool Gram::ChildIdIsEmpty(int32_t child_id)
{
return child_id == 0;
}
bool Gram::ChildIdIsToken(int32_t child_id)
{
return child_id < 0;
}
bool Gram::ChildIdIsNode(int32_t child_id)
{
return child_id > 0;
}
index_t Gram::TokenIdFromChildId(int32_t child_id)
{
return index_t(-child_id) - 1;
}
int32_t Gram::ChildIdFromTokenId(index_t token_id)
{
return -1 - int32_t(token_id);
}
void Compiler::DumpTree()
{
Debug("= Dump =======================================");
Debug("nodes.size()="s + std::to_string(nodes.size()));
if (nodes.size() > 0) {
if (0) {
Debug("--- Nodes ------------------------------------");
for (const auto& node : nodes) {
std::string line{"("s + std::to_string(node.node_id) + "):"s};
for (const auto& child : node.child_ids) {
line += " "s;
if (ChildIdIsToken(child))
line += "t"s + std::to_string(TokenIdFromChildId(child));
else
line += std::to_string(child);
}
Debug(line);
}
}
Debug("--- Tree -------------------------------------");
std::deque<std::pair<int32_t, size_t>> todo{std::pair<int32_t, size_t>{static_cast<int32_t>(0), 0}}; // id, indent
while (!todo.empty()) {
auto [current_index, indent] {todo.front()};
todo.pop_front();
std::string line(indent, ' ');
if (ChildIdIsToken(current_index)) {
index_t token_id {TokenIdFromChildId(current_index)};
line += "Token("s + std::to_string(token_id) + "): "s + tokens[token_id].type + "("s + tokens[token_id].value + ")"s;
} else {
auto& node {nodes[current_index]};
line += "Node("s + std::to_string(current_index) + "): "s + node.type + "/" + std::to_string(node.variant);
auto child_ids{node.child_ids};
for (int i = 0; i < child_ids.size(); i++) {
todo.insert(todo.begin() + i, std::pair<int32_t, size_t>{child_ids[i], indent + 1});
}
}
Debug(line);
}
}
Debug("==============================================");
}
index_t Compiler::AddNode(const std::string& type, index_t variant, NodePosition pos)
{
auto& list { bnf[type][variant]};
index_t node_id{nodes.size()};
if (nodes.size() > 0)
nodes[pos.node_id].child_ids[pos.child_pos] = node_id;
nodes.emplace_back(TreeNode{pos, node_id, type, variant, std::vector<int32_t>(size_t(list.size()), 0)});
return node_id;
}
Compiler::AddNodeGuard::AddNodeGuard(Compiler& compiler, index_t variant): m_compiler(compiler)
{
m_compiler.symbol_variants.push_back(variant);
}
Compiler::AddNodeGuard::~AddNodeGuard()
{
m_compiler.symbol_variants.pop_back();
}
void Compiler::IncNodePosition(NodePosition& pos)
{
if (nodes.size() == 0) // special case: empty tree
return;
if (pos.node_id >= nodes.size())
throw std::runtime_error("ICE: NodePosition with node_id "s + std::to_string(pos.node_id) + " doesn't exist."s);
if (pos.child_pos >= nodes[pos.node_id].child_ids.size())
throw std::runtime_error("ICE: NodePosition with child_pos "s + std::to_string(pos.child_pos) + " in node_id "s + std::to_string(pos.node_id) + " doesn't exist."s);
int32_t child_id{nodes[pos.node_id].child_ids[pos.child_pos]};
if (ChildIdIsEmpty(child_id))
throw std::runtime_error("ICE: NodePosition is empty");
// Actually, advance
if (ChildIdIsToken(child_id)) {
pos.child_pos++;
} else {
pos.node_id = child_id;
pos.child_pos = 0;
}
// Go to parent if child ids completely traversed
while (pos.node_id > 0 && pos.child_pos >= nodes[pos.node_id].child_ids.size()) {
pos = nodes[pos.node_id].pos;
pos.child_pos++;
}
// Advancing at root node for last child is allowed: Finished
if (pos.child_pos >= nodes[pos.node_id].child_ids.size())
return;
if (ChildIdIsNode(nodes[pos.node_id].child_ids[pos.child_pos]))
throw std::runtime_error("ICE: No node expected at "s + std::to_string(pos.node_id) + "/"s + std::to_string(pos.child_pos));
}
size_t Compiler::minimumSymbolsNeeded(std::string symbol)
{
if (isTerminal(bnf, symbol)) {
return 1;
} else {
auto it_min{m_min.find(symbol)};
if (it_min != m_min.end())
return it_min->second;
m_min[symbol] = std::numeric_limits<size_t>::max();
auto it{bnf.find(symbol)};
if (it != bnf.end()) {
size_t minimum{std::numeric_limits<size_t>::max()};
for (const auto& list: it->second) {
minimum = std::min(minimum, minimumSymbolsNeeded(list));
}
m_min[symbol] = minimum;
return minimum;
} else
throw std::runtime_error("ICE: Symbol "s + symbol + " expected in BNF"s);
}
}
size_t Compiler::minimumSymbolsNeeded(std::vector<std::string> symbol_list)
{
size_t result{0};
for (const auto& symbol: symbol_list) {
size_t min { minimumSymbolsNeeded(symbol) };
if (min == std::numeric_limits<size_t>::max())
return min;
result += min;
}
return result;
}
/// begin, end: indexes in tokens list
bool Compiler::match(std::vector<std::string> symbol_list, size_t begin, size_t end)
{
// match terminal symbols at start
while (begin < end && symbol_list.size() > 0 && symbol_list.front() == tokens[begin].type) {
begin++;
symbol_list.erase(symbol_list.begin());
}
// match terminal symbols at end
while (begin < end && symbol_list.size() > 0 && symbol_list.back() == tokens[end - 1].type) {
end--;
symbol_list.erase(symbol_list.end() - 1);
}
// matching of empty lists
if (symbol_list.size() == 0) {
if (begin == end) { // only match real empty list
// this is the point of the final match
constructTree();
return true;
}
return false;
}
// now, symbol_list has size > 0 and contains non-terminal symbols at start and end
// resolve first symbol
auto it{bnf.find(symbol_list.front())};
if (it != bnf.end()) {
for (size_t i = 0; i < it->second.size(); i++) { // iterate over alternatives
AddNodeGuard guard(*this, i);
std::vector<std::string> list {it->second[i]};
list.insert(list.end(), symbol_list.begin() + 1, symbol_list.end());
if (minimumSymbolsNeeded(list) > end - begin) // stop recursion
continue;
// TODO: recurse last?
if (match(list, begin, end))
return true;
}
} else
return false; // terminal symbol not found in bnf, non-matching
return false; // no match found
}
bool Compiler::match(std::string symbol, size_t begin, size_t end)
{
std::vector<std::string> symbol_list{symbol};
return match(symbol_list, begin, end);
}
void Compiler::constructTree()
{
symbol_variants_it = symbol_variants.begin();
m_symbol_list = {m_top};
m_symbol_list_pos = 0;
NodePosition tree_pos;
while (m_symbol_list_pos < m_symbol_list.size()) {
std::string symbol{m_symbol_list[m_symbol_list_pos]};
if (isTerminal(bnf, symbol)) {
// Advance terminal symbol
nodes[tree_pos.node_id].child_ids[tree_pos.child_pos] = ChildIdFromTokenId(m_symbol_list_pos);
IncNodePosition(tree_pos);
m_symbol_list_pos++;
} else {
// Replace non-terminal symbol
m_symbol_list.erase(m_symbol_list.begin() + m_symbol_list_pos);
std::vector<std::string> list {bnf[symbol][*symbol_variants_it]};
m_symbol_list.insert(m_symbol_list.begin() + m_symbol_list_pos, list.begin(), list.end());
index_t node_id {AddNode(symbol, *symbol_variants_it, tree_pos)};
if (node_id > 0) {
nodes[tree_pos.node_id].child_ids[tree_pos.child_pos] = node_id;
IncNodePosition(tree_pos);
}
symbol_variants_it++;
}
}
}
Compiler::Compiler(BNF& bnf, const std::string& top): bnf(bnf), m_top(top), ReverseBNF{Reverse(bnf)}, reversedFirst{reverseFirst(bnf)}
{
//std::cout << "DEBUG: " << m_top << std::endl;
//
// prepare helper cache (TODO: remove this ugly workaround for remaining bad marker elements)
//
minimumSymbolsNeeded("translation-unit");
// remove bad marker elements
auto it{m_min.begin()};
while (it != m_min.end()) {
if (it->second == std::numeric_limits<size_t>::max()) {
it = m_min.erase(it);
} else {
++it;
}
}
minimumSymbolsNeeded("translation-unit");
}
std::vector<TreeNode> Compiler::compile(std::vector<Token> p_tokens)
{
clear();
tokens = p_tokens;
if (tokens.size() == 0)
throw std::runtime_error("No tokens");
//
// top-down algorithm:
//
// 1. Match linear tokens list to bnf, building up list of used variants (symbol_variants)
// 2. Construct Node Tree from symbol_variants
//
if (!match(m_top, 0, tokens.size()))
throw std::runtime_error("Compile error");
DumpTree();
return nodes;
}
|