1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
#include "grammer.h"
using namespace Gram;
void Tree::clear() {
nodes.clear();
root = 0;
last = 0;
node_num = 0;
}
bool Tree::Valid(const std::string& Top) const {
// A program is non empty
if (node_num == 0)
return false;
// Start symbol on top
auto rootNode{nodes.find(root)};
if (rootNode == nodes.end())
throw std::runtime_error("Node not found: "s + std::to_string(root));
if (rootNode->second.token.type != Top)
return false;
// All nodes filled (implies all leaves are terminal)
for (const auto& [index, node]: nodes) {
if (node.childs.size() < node.child_types.size())
return false; // node not filled
}
return true;
}
bool Tree::AddFirstNode(const Token& token, const BNF& bnf, const std::map<std::string, std::set<std::string>>& reverseBNF) {
node_num ++;
root = node_num;
last = node_num;
auto reverseRule{reverseBNF.find(token.type)};
if (reverseRule == reverseBNF.end())
throw std::runtime_error("Reverse rule not found for "s + token.type);
auto rule{bnf.find(token.type)};
if (rule != bnf.end()) { // multiple variants!
throw std::runtime_error("BNF rule for terminal symbol "s + token.type + " found."s);
}
nodes.emplace(root, TreeNode{0, std::vector<index_t>{}, std::vector<std::string>{}, token});
return true;
}
std::vector<TreeNode> Tree::getParentTreeNode(const BNF& bnf, const std::map<std::string, std::set<std::string>>& reverseBNF) {
std::vector<TreeNode> result; // default: empty
auto& root_name {nodes[root].token.type};
auto bnfParents {reverseBNF.find(root_name)};
if (bnfParents == reverseBNF.end())
return result;
for (const auto& parent_node_name : bnfParents->second) {
auto lists {bnf.at(parent_node_name)};
for (const auto& list : lists) {
if (list.size() > 0 && list[0] == root_name) {
TreeNode node{0, std::vector<index_t>{root}, list, Token{parent_node_name}};
result.push_back(node);
}
}
}
return result;
}
index_t Tree::GetLast() {
index_t result {root};
while(result != 0 && nodes[result].childs.size() >= 2) {
result = nodes[result].childs[nodes[result].childs.size() - 1];
}
return result;
}
void Tree::AddRootNode(const TreeNode& newRootNode) {
node_num++;
nodes[node_num] = newRootNode;
root = node_num;
last = node_num;
}
void Tree::RemoveRootNode() {
root = nodes[root].childs[0];
nodes.erase(node_num);
node_num--;
last = GetLast();
}
// Path from leaf to root
std::vector<std::string> Tree::GetPath(std::string a, std::string b, const BNF& bnf, const std::map<std::string, std::set<std::string>>& reverseBNF) {
std::vector<std::string> result;
while (a != b) {
auto parents {reverseBNF.find(a)};
if (parents == reverseBNF.end())
return {};
bool hit{false};
for (const auto& parent : parents->second) {
for (const auto& list : bnf.at(parent)) {
if (list.size() > 0 && list[0] == a) {
if (!hit) {
result.push_back(a);
a = parent;
hit = true;
} else
throw std::runtime_error("Double match for "s + parent + "/"s + a);
}
}
}
}
if (a == b) {
result.push_back(a);
}
return result;
}
index_t Tree::AddNode(const std::string& name, const std::string& child_name, index_t parent_index, const BNF& bnf, const std::map<std::string, std::set<std::string>>& reverseBNF)
{
TreeNode& parent {nodes[parent_index]};
node_num++;
index_t index = node_num;
parent.childs.push_back(index);
std::vector<std::string> child_types;
auto rule {bnf.find(name)};
if (rule != bnf.end()) {
for (auto& list : rule->second) {
if (list.size() > 0 && list[0] == child_name)
child_types = list;
}
}
nodes.emplace(index, TreeNode{parent_index, {}, child_types, Token{name}});
//root stays
last = GetLast();
return index;
}
void Tree::AddPath(const std::vector<std::string>& path, index_t current_index, const BNF& bnf, const std::map<std::string, std::set<std::string>>& reverseBNF) {
for (int i = path.size() - 1; i >= 0; i--) {
std::string child_name;
if (i > 0)
child_name = path[i - 1];
current_index = AddNode(path[i], child_name, current_index, bnf, reverseBNF);
}
}
// try to add Node to tree
bool Tree::Add(const Token& token, const BNF& bnf, const std::map<std::string, std::set<std::string>>& reverseBNF) {
if (nodes.empty()) { // first node
return AddFirstNode(token, bnf, reverseBNF);
} else { // at least one character is already present
// Traverse tree until partially filled node found
// or new node can be added
index_t current_index{last};
while (current_index != 0) {
TreeNode& node {nodes[current_index]};
if (node.childs.size() < node.child_types.size()) { // partially filled node
std::vector<std::string> list = GetPath(token.type, node.child_types[node.childs.size()], bnf, reverseBNF);
if (list.size() > 0) {
AddPath(list, current_index, bnf, reverseBNF);
return true;
} else {
return false; // The path a->b is not available via bnf
}
}
current_index = node.parent;
}
// Add node at root
std::vector<TreeNode> parent_nodes = getParentTreeNode(bnf, reverseBNF);
if (parent_nodes.size() == 0)
throw std::runtime_error("Couldn't add new parent node for "s + nodes[root].token.type);
for (const auto &i : parent_nodes) {
AddRootNode(i);
if (Add(token, bnf, reverseBNF))
return true;
RemoveRootNode();
}
}
return false;
}
// add path to start symbol
void Tree::Resolve(const BNF& bnf, const std::map<std::string, std::set<std::string>>& reverseBNF) {
if (nodes.empty()) // only handle non-empty trees
return;
while (true) {
std::string& old_root_name { nodes[root].token.type }; // current root node type
auto parents {reverseBNF.find(old_root_name)};
if (parents != reverseBNF.end()) { // parents in bnf available
bool hit{false};
for (auto& parent : parents->second) {
for (const auto& list : bnf.at(parent)) {
if (list.size() == 1 && list[0] == old_root_name) {
if (!hit) {
// Add new TreeNode in the direction to root:
// New root with 1 child (old root)
nodes.emplace(++node_num,
TreeNode{0, // parent
std::vector<index_t>{root}, // child indices
std::vector<std::string>{old_root_name}, // child types
Token{parent}
});
nodes[root].parent = node_num;
root = node_num;
// this->last stays
hit = true;
} else
throw std::runtime_error("Error: Multiple resolve nodes for "s + old_root_name);
}
}
}
if (!hit)
break;
} else
break;
}
}
void Tree::Dump()
{
for (const auto& i : nodes) {
std::cout << i.second.token.type << " (" << i.second.token.value << ")" << std::endl;
}
}
Compiler::Compiler(const BNF& bnf, const std::string& Top): bnf(bnf), Top(Top), ReverseBNF{Reverse(bnf)}
{
}
Tree Compiler::compile(std::vector<Token> Tokens)
{
if (Tokens.size()){
} else
throw std::runtime_error("No tokens!");
Tree tree;
for (const Token& i : Tokens) {
if (!tree.Add(i, bnf, ReverseBNF)) {
//tree.Dump();
throw std::runtime_error("Compile error: Invalid token "s + i.type);
}
}
tree.Resolve(bnf, ReverseBNF);
if (!tree.Valid(Top))
throw std::runtime_error("Compile error: Program incomplete");
return tree;
}
|