1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
#include "grammer.h"
#include <algorithm>
using namespace Gram;
void Compiler::clear() {
nodes.clear();
root_node_id = 0;
tokens_used = 0;
}
std::string Compiler::GetTypeOfNode(index_t node_id) const
{
return nodes[node_id].type;
}
bool Compiler::IsRootNode(index_t node_id) const
{
auto node& {nodes[node_id]};
return node.parent_node_id == node.node_id;
}
void Compiler::Validate() const {
// A program is non empty
if (nodes.size() == 0)
throw std::runtime_error("");
// Consistency check for nodes
if (root_node_id >= nodes.size())
throw std::runtime_error("Bad root node: "s + std::to_string(root_node_id) + " vs. "s + std::to_string(nodes.size()));
// Start symbol on top
if (GetTypeOfNode(root_node_id) != Top)
throw std::runtime_error("Root node not start symbol!");
// All nodes filled
for (const auto& node: nodes) {
if (node.child_ids.size() != bnf[node.type][node.variant].size())
throw std::runtime_error("Node not filled: "s + node.type + "["s + std::to_string(node.variant) + "]"s);
}
}
void Compiler::DumpTree()
{
std::cout << "=== Tree =====================================" << std::endl;
for (const auto& i : nodes) {
std::cout << i.type << std::endl;
}
}
bool RootIsStartSymbol()
{
return GetTypeOfNode(root_node_id) == Top;
}
bool ChildIdIsToken(int32_t child_id)
{
return child_i < 0;
}
index_t TokenIdFromChildId(int32_t child_id)
{
return index_t(-child_id) - 1;
}
int32_t ChildIdFromTokenId(index_t token_id)
{
return -1 - int32_t(token_id);
}
bool AllTokensUsed()
{
return tokens_used == tokens.size();
}
bool Compiler::treeIsComplete()
{
return RootIsStartSymbol() && AllTokensUsed();
}
std::vector<std::string>& Compiler::getNodeExpectedChilds(node_id)
{
std::string& type = nodes[node_id].type;
index_t& variant = nodes[node_id].variant;
return bnf[type][variant];
}
// returns true if all childs are filled, recursively. Else false with to_fill as hint to node to fill
bool Compiler::subTreeIsComplete(index_t node_id, index_t& to_fill)
{
for (const auto& i : nodes[node_id].child_ids) {
if (!ChildIdIsToken(i)) { // consider subtrees
if (!subTreeIsComplete(i, to_fill))
return false; // found incomplete subtree -> return it!
}
}
if (nodes[node_id].child_ids.size() < getNodeExpectedChilds(node_id).size()) {
to_fill = node_id;
return false;
}
return true;
}
size_t Compiler::CommonPrefix(const std::vector<Token>& tokens, const std::vector<std::string>& types)
{
auto [tokens_it, types_it] = std::mismatch(tokens.begin(), tokens.end(), types.begin(), types.end(), [](const Token& token, const std::string& s){ return token.type == s; });
return types_it - types.begin(); // a distance, 0 on no match
}
void Compiler::AddFirstNode()
{
root_node_id = 0;
const std::string& child_type = tokens[0].type;
auto it = ReverseBNF.find(child_type);
if (it == ReverseBNF.end())
throw std::runtime_error("Type not found: "s + child_type + " ("s + tokens[0].value + ")"s);
std::set<std::string>& alternatives_set {it->second};
std::string node_type;
index_t node_variant;
std::deque<std::pair<std::string, index_t>> alternatives; // only for valid elements from alternatives_set
std::vector<index_t> child_ids;
for (const auto& type : alternatives_set) {
const auto& variants{bnf[type]};
for (int i = 0; i < variants.size(); i++) {
const std::vector<std::string> & variant{variants[i]};
size_t common{};
if ((common = CommonPrefix(tokens, variant)) > 0) { // match a common prefix
if (node_type == "") { // no match yet
node_type = type;
node_variant = i;
for (int token_id = 0; token_id < common; token_id++)
child_ids.push_back(ChildIdFromTokenId(token_id));
} else
alternatives.emplace_back(type, i);
}
}
}
if (node_type == "") // no matching type found
throw std::runtime_error("No matching first node found.");
nodes.emplace_back({0, 0, node_type, node_variant, alternatives, child_ids});
tokens_used = child_ids.size();
}
bool Compiler::AddRootNode()
{
if (nodes.size() == 0) {
AddFirstNode();
} else {
const std::string& child_type = nodes[root_node_id].type; // starting at old root
auto it = ReverseBNF.find(child_type);
if (it == ReverseBNF.end()) // this one doesn't have a parent, maybe a start symbol to discard?
return false;
index_t old_root_node_id {root_node_id};
index_t new_root_node_id {nodes.size()};
nodes[root_node_id].parent_node_id = new_root_node_id;
std::set<std::string>& alternatives_set {it->second};
std::string node_type;
index_t node_variant;
std::deque<std::pair<std::string, index_t>> alternatives; // only for valid elements from alternatives_set
std::vector<index_t> child_ids{1, old_root_node_id};
for (const auto& type : alternatives_set) {
const auto& variants{bnf[type]};
for (int i = 0; i < variants.size(); i++) {
const std::vector<std::string> & variant{variants[i]};
if (child_type == variant[0]) {
if (node_type == "") {
node_type = type;
node_variant = i;
} else
alternatives.emplace_back(type, i); // duplicates possible: variants of same type
}
}
}
if (node_type == "") // no matching type found (maybe backtrack possible?)
return false;
// now add!
root_node_id = new_root_node_id;
nodes.emplace_back({root_node_id, root_node_id, node_type, node_variant, alternatives, child_ids});
// keep tokens_used as is
}
return true;
}
void RemoveLastNode()
{
TreeNode& node {nodes.back()};
index_t node_id = node.node_id;
if (node_id == root_node_id) { // No parent -> remove root
if (node.child_ids().empty()) { // No children -> now empty
clear();
} else if (node.child_ids().size() == 1) { // One child: removing possible
root_node_id = node.child_ids()[0];
nodes.pop_back();
} else
throw std::runtime_error("Backtrack not possible: Root not empty"); // ICE
} else if (node.child_ids().empty()) { // No children -> remove leaf
// We have a parent, otherwise we would have taken previous branch
TreeNode& parent {nodes[node.parent_node_id]};
if (parent.child_ids().empty() || parent.child_ids().last() != node_id)
throw std::runtime_error("Backtrack: Bad child nodes"); // ICE
parent.childs_ids().pop_back();
nodes.pop_back();
} else { // In the middle
throw std::runtime_error("Backtrack in the middle of the tree."); // ICE
}
}
// Change type of last node according to alternatives
void ChangeNodeType()
{
TreeNode& node {nodes.back()};
index_t node_id = node.node_id;
if (node.alternatives.empty())
throw std::runtime_error("No alternatives found during Backtrack"); // ICE
auto& [type, variant] {node.alternatives.front()};
node.type = type;
node.variant = variant;
node.alternatives.pop_front();
}
// throws if no further track back is possible: compile error
void Compiler::TrackBack()
{
// Search backwards for alternatives: last node with alternatives (variant or alt. token)
while (!nodes.empty() && nodes.last().alternatives.empty()) {
RemoveLastNode();
}
if (nodes.empty()) {
throw std::runtime_error("Compile error: Invalid program.");
}
ChangeNodeType();
}
// return shortest path with variants
// via first-entry-in-bnf-rule
// excluding lower (already exists)
// including upper (already determined to be included)
// breadth-first search
std::map<std::string, std::string> Compiler::traverse(lower, upper)
{
std::map<std::string, std::string> visited; // node, child
std::deque<std::pair<std::string, std::string>> todo{{lower, ""}}; // node, child
while (!todo.empty()) {
auto& [current_node, current_child] = todo.front();
todo.pop_front();
if (!visited[current_node]) {
auto parents_it {reverseBNF.find(current_node)};
if (parents_it != reverseBNF.end()) {
auto& parents {parents_it->second};
visited[current_node] = current_child;
std::for_each(parents.begin(), parents.end(), [&](const auto&x) {todo.emplace_back(x, current_node);});
}
}
}
return visited;
}
// returns list from lower (excluding) to upper (including)
// returns empty list on fail
std::vector<std::string> Compiler::GetPath(std::string upper, std::string lower) {
std::vector<std::string> result;
// traverse bnf from lower to upper
std::map<std::string, std::string> visited {traverse(lower, upper)};
auto current {upper};
while (current != lower) {
auto& child = visited[current];
result.push_back(current);
current = child;
}
return result;
}
index_t Compiler::AddNode(const std::string& name, const std::string& child_type, index_t parent_index)
{
TreeNode& parent {nodes[parent_index]};
index_t index = nodes.size();
parent.child_ids.push_back(index);
index_t variant;
std::deque<std::string> alternatives;
const auto& lists { bnf[parent.type] };
for (int i = 0; i < lists.size(); i++) { // variants
if (lists[i].size() > 0 && lists[i][0] == child_type)
variant = i;
}
nodes.emplace_back({parent_index, index, child_type, variant, alternatives, {}});
//root stays, tokens_used stays
return index;
}
void Compiler::AddPath(const std::vector<std::string>& path, index_t current_index) {
for (int i = path.size() - 1; i > 0; i--) {
std::string child_name = path[i - 1];
current_index = AddNode(path[i], child_name, current_index);
}
nodes.back().child_ids.emplace_back(ChildIdFromTokenId(tokens_used));
tokens_used++;
}
bool Compiler::FillTree()
{
if (nodes.size() == 0) // ignore empty tree, successfully
return true;
index_t to_fill;
while (!subTreeIsComplete(root_node_id, to_fill)) {
auto& node {nodes[to_fill]};
auto list = GetPath(bnf[node.type][node.variant][node.child_ids.size()], tokens[tokens_used]);
if (list.size() > 0) {
AddPath(list, to_fill);
return true;
} else {
return false;
}
}
}
Compiler::Compiler(const BNF& bnf, const std::string& Top): bnf(bnf), Top(Top), ReverseBNF{Reverse(bnf)}
{
}
Tree Compiler::compile(std::vector<Token> Tokens)
{
clear();
tokens = Tokens;
if (tokens.size() == 0)
throw std::runtime_error("No tokens!");
while (!treeIsComplete()) {
if (!FillTree())
TrackBack();
else if (!AddRootNode())
TrackBack();
else if (!FillTree())
TrackBack();
}
Validate();
return tree;
}
|