1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
|
// Intel assembly language
// segments: code, stack
#include "minicc.h"
#include <algorithm>
#include <any>
#include <array>
#include <deque>
#include <functional>
#include <stdexcept>
#include <functional>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
using namespace std::string_literals;
using namespace std::placeholders;
namespace {
// binary code operators
std::vector<uint8_t> operator+(std::vector<uint8_t> a, const std::vector<uint8_t>& b) {
a.insert(a.end(), b.begin(), b.end());
return a;
}
std::vector<uint8_t> operator+(std::vector<uint8_t> a, const uint8_t& b) {
a.push_back(b);
return a;
}
// REX prefix: 0b0100WRXB
std::vector<uint8_t> REX(std::string s) {
uint8_t result{0b01000000};
if (s == "W")
result |= 0b00001000;
if (s == "R")
result |= 0b00000100;
if (s == "X")
result |= 0b00000010;
if (s == "B")
result |= 0b00000001;
return { result };
}
std::vector<uint8_t> imm8(std::string s) {
long value{ std::stol(s) };
uint8_t* bin = reinterpret_cast<uint8_t*>(&value);
return { uint8_t(*bin & 0xFF) };
}
std::vector<uint8_t> imm32(std::string s) {
long value{ std::stol(s) };
uint32_t* bin = reinterpret_cast<uint32_t*>(&value);
return {uint8_t(*bin & 0xFF), uint8_t(*bin >> 8 & 0xFF), uint8_t(*bin >> 16 & 0xFF), uint8_t(*bin >> 24 & 0xFF) };
}
std::unordered_map<std::string, size_t> IndexOfRegister{
{"al", 0}, {"ah", 4},
{"bl", 3}, {"bh", 7},
{"cl", 1}, {"ch", 5},
{"dl", 2}, {"dh", 6},
{"ax", 0}, {"sp", 4},
{"bx", 3}, {"bp", 7},
{"cx", 1}, {"si", 5},
{"dx", 2}, {"di", 6},
{"eax", 0}, {"esp", 4},
{"ebx", 3}, {"ebp", 7},
{"ecx", 1}, {"esi", 5},
{"edx", 2}, {"edi", 6},
};
// Manual, page 530
// Reg + Reg/Memory
uint8_t ModRM(std::string reg, std::string rm) {
// TODO: extend
uint8_t result{0b11000000};
auto index1{ IndexOfRegister.find(reg) };
if (index1 == IndexOfRegister.end())
throw std::runtime_error("Unknown register for arg1: "s + reg);
result |= (index1->second << 3);
auto index2{ IndexOfRegister.find(rm) };
if (index2 == IndexOfRegister.end())
throw std::runtime_error("Unknown register for arg2: "s + rm);
result |= index2->second;
return result;
}
enum class AddressType {
Relative8,
Relative16,
Relative32,
Absolute8,
Absolute16,
Absolute32,
};
struct Address
{
AddressType type;
size_t position; // relative to respective machine code, e.g. byte 1 in jump
std::string label; // where to jump to, as label
};
struct InstructionCode
{
std::vector<uint8_t> machine_code;
std::vector<Address> addresses;
};
// List of alternative codes
typedef std::deque<InstructionCode> InstructionCodeList;
bool O1{ true }; // Optimization
using OP_T = std::vector<uint8_t>;
InstructionCodeList op_jmp(const std::vector<Token>& sl, std::vector<uint8_t> op_bytes_8, std::vector<uint8_t> op_bytes_32)
{
if (sl.size() == 2) { // JMP rel8 / rel32
const std::string& label{ sl[1].value };
InstructionCodeList result;
if (op_bytes_32.size() > 0) {
op_bytes_32.resize(op_bytes_32.size() + 4, 0x00);
result.push_back({ op_bytes_32, { {AddressType::Relative32, op_bytes_32.size() - 4, label} } } );
}
if (op_bytes_8.size() > 0 && (O1 || op_bytes_32.size() == 0)) {
op_bytes_8.push_back(0x00);
result.push_back({ op_bytes_8, { {AddressType::Relative8, op_bytes_8.size() - 1, label} } });
}
return result;
}
// ... TODO
throw std::runtime_error("Unknown command: "s + sl[0].value);
}
std::unordered_map<std::string, std::function<InstructionCodeList(const std::vector<Token>&)>> ops_old{
// Integer Addition
{"add", [](const std::vector<Token>& sl) -> InstructionCodeList {
if (sl.size() == 3) {
if (sl[1].value == "eax") { // ADD EAX, imm32
return { { std::vector<uint8_t>{ 0x05 } +imm32(sl[2].value), {} } };
} else if (sl[1].value == "rax") { // ADD RAX, imm32
return { { REX("W") + std::vector<uint8_t>{ 0x05 } +imm32(sl[2].value), {} } };
}
}
// ... TODO
throw std::runtime_error("Unknown command: "s + sl[0].value);
}},
// Call Procedure
{"call", std::bind(op_jmp, _1, OP_T{}, OP_T{ 0xE8 })},
// Interrupt
{"int", [](const std::vector<Token>& sl) -> InstructionCodeList {
if (sl.size() == 2) {
if (sl[1].value == "0") { // INT 0
return { { std::vector<uint8_t>{ 0xCE }} };
} else if (sl[1].value == "1") { // INT 1
return { { std::vector<uint8_t>{ 0xF1 }} };
} else if (sl[1].value == "3") { // INT 3
return { { std::vector<uint8_t>{ 0xCC }} };
} else { // INT <...>
return { { std::vector<uint8_t>{ 0xCD } +imm8(sl[2].value) } };
}
}
// ... TODO
throw std::runtime_error("Unknown command: "s + sl[0].value);
}},
// Unconditional Jump
{"jmp", std::bind(op_jmp, _1, OP_T{ 0xEB }, OP_T{ 0xE9 })},
// Conditional Jumps
{"ja", std::bind(op_jmp, _1, OP_T{ 0x77 }, OP_T{ 0x0F, 0x87 })},
{"jae", std::bind(op_jmp, _1, OP_T{ 0x73 }, OP_T{ 0x0F, 0x83 })},
{"jb", std::bind(op_jmp, _1, OP_T{ 0x72 }, OP_T{ 0x0F, 0x82 })},
{"jbe", std::bind(op_jmp, _1, OP_T{ 0x76 }, OP_T{ 0x0F, 0x86 })},
{"jc", std::bind(op_jmp, _1, OP_T{ 0x72 }, OP_T{ 0x0F, 0x82 })},
{"jecxz", std::bind(op_jmp, _1, OP_T{ 0xE3 }, OP_T{})},
{"jrcxz", std::bind(op_jmp, _1, OP_T{ 0xE3 }, OP_T{})},
{"je", std::bind(op_jmp, _1, OP_T{ 0x74 }, OP_T{ 0x0F, 0x84 })},
{"jg", std::bind(op_jmp, _1, OP_T{ 0x7F }, OP_T{ 0x0F, 0x8F })},
{"jge", std::bind(op_jmp, _1, OP_T{ 0x7D }, OP_T{ 0x0F, 0x8D })},
{"jl", std::bind(op_jmp, _1, OP_T{ 0x7C }, OP_T{ 0x0F, 0x8C })},
{"jle", std::bind(op_jmp, _1, OP_T{ 0x7E }, OP_T{ 0x0F, 0x8E })},
{"jna", std::bind(op_jmp, _1, OP_T{ 0x76 }, OP_T{ 0x0F, 0x86 })},
{"jnae", std::bind(op_jmp, _1, OP_T{ 0x72 }, OP_T{ 0x0F, 0x82 })},
{"jnb", std::bind(op_jmp, _1, OP_T{ 0x73 }, OP_T{ 0x0F, 0x83 })},
{"jnbe", std::bind(op_jmp, _1, OP_T{ 0x77 }, OP_T{ 0x0F, 0x87 })},
{"jnc", std::bind(op_jmp, _1, OP_T{ 0x73 }, OP_T{ 0x0F, 0x83 })},
{"jne", std::bind(op_jmp, _1, OP_T{ 0x75 }, OP_T{ 0x0F, 0x85 })},
{"jng", std::bind(op_jmp, _1, OP_T{ 0x7E }, OP_T{ 0x0F, 0x8E })},
{"jnge", std::bind(op_jmp, _1, OP_T{ 0x7C }, OP_T{ 0x0F, 0x8C })},
{"jnl", std::bind(op_jmp, _1, OP_T{ 0x7D }, OP_T{ 0x0F, 0x8D })},
{"jnle", std::bind(op_jmp, _1, OP_T{ 0x7F }, OP_T{ 0x0F, 0x8F })},
{"jno", std::bind(op_jmp, _1, OP_T{ 0x71 }, OP_T{ 0x0F, 0x81 })},
{"jnp", std::bind(op_jmp, _1, OP_T{ 0x7B }, OP_T{ 0x0F, 0x8B })},
{"jns", std::bind(op_jmp, _1, OP_T{ 0x79 }, OP_T{ 0x0F, 0x89 })},
{"jnz", std::bind(op_jmp, _1, OP_T{ 0x75 }, OP_T{ 0x0F, 0x85 })},
{"jo", std::bind(op_jmp, _1, OP_T{ 0x70 }, OP_T{ 0x0F, 0x80 })},
{"jp", std::bind(op_jmp, _1, OP_T{ 0x7A }, OP_T{ 0x0F, 0x8A })},
{"jpe", std::bind(op_jmp, _1, OP_T{ 0x7A }, OP_T{ 0x0F, 0x8A })},
{"jpo", std::bind(op_jmp, _1, OP_T{ 0x7B }, OP_T{ 0x0F, 0x8B })},
{"js", std::bind(op_jmp, _1, OP_T{ 0x78 }, OP_T{ 0x0F, 0x88 })},
{"jz", std::bind(op_jmp, _1, OP_T{ 0x74 }, OP_T{ 0x0F, 0x84 })},
// Memory Move
{ "mov", [](const std::vector<Token>& sl) -> InstructionCodeList {
if (sl.size() == 3) {
return { { std::vector<uint8_t>{ 0x88 } + ModRM(sl[2].value, sl[1].value), {} } }; // r/m8, r8: ModRM:r/m (w), ModRM:reg (r)
}
// ... TODO
throw std::runtime_error("Unknown command: "s + sl[0].value);
}},
// No Operation
{ "nop", [](const std::vector<Token>& sl) -> InstructionCodeList {
return {{ std::vector<uint8_t>{ 0x90 }, {}}};
}},
// Return from procedure
{ "ret", [](const std::vector<Token>& sl) -> InstructionCodeList {
return {{ std::vector<uint8_t>{ 0xC3 }, {}}}; // near return; TODO: far return is 0xCB
}},
{ "xor", [](const std::vector<Token>& sl) -> InstructionCodeList {
if (sl.size() == 3) {
return { { std::vector<uint8_t>{ 0x33 } + ModRM(sl[1].value, sl[2].value) } }; // r8, r/m8: ModRM:reg (w), ModRM:r/m (r)
}
// ... TODO
throw std::runtime_error("Unknown command: "s + sl[0].value);
}},
};
#if 0
prefixes{
"lock", 0xf0,
// branch hint
0x2e, "branch not taken"
0x3e, "branch taken"
0x66, "operand size override" // switch between 16 and 32 bit operands
0x67, "address size override" // switch between 16 and 32 bit addresses
};
};
#endif
#ifdef ASM_PARSER
BNF GetBNF() {
// TODO:
return {
{ "assembler-unit", {
{}
}},
{ "immediate-32", {
{}
}},
{ "mnemonic", {
{}
}},
{ "register", {
{}
}},
{ "register-8", {
{}
}},
{ "register-16", {
{}
}},
{ "register-32", {
{}
}},
{ "register-64", {
{}
}},
};
};
#endif
// Checks a 32 bit relative address if it's valid as 8 bit address
bool IsSmallAddress(const InstructionCode& insn) {
if (insn.addresses.size() != 1)
throw std::runtime_error("Bad number of addresses in insn");
size_t i{insn.addresses[0].position};
if (i > insn.machine_code.size() - 3)
throw std::runtime_error("Bad Address index "s + std::to_string(i) + " in insn with "s + std::to_string(insn.machine_code.size()) + " bytes"s);
if (std::count(insn.machine_code.begin() + i, insn.machine_code.begin() + i + 3, 0x00) == 3 ||
std::count(insn.machine_code.begin() + i, insn.machine_code.begin() + i + 3, 0xFF) == 3)
return true;
return false;
}
} // namespace
class Op
{
public:
virtual ~Op(){};
virtual std::vector<uint8_t> getMachineCode() = 0;
virtual size_t size() = 0; ///< returns size in bytes
virtual bool optimize() = 0; ///< returns true if changed
};
using AsmArgs = std::vector<std::any>; // 0th element is mnemonic
using FactoryFunction = std::function<std::shared_ptr<Op>(AsmArgs&)>;
std::unordered_map<std::string, FactoryFunction> ops;
bool registerOp(const std::string& mnemonic, FactoryFunction f)
{
if (ops.contains(mnemonic)) {
std::cout << "Warning: mnemonic |" << mnemonic << "| already registered." << std::endl;
return false;
}
std::cout << "Registering mnemonic |" << mnemonic << "|." << std::endl;
ops[mnemonic] = f;
return true;
}
class OpSimple: public Op
{
public:
OpSimple(std::vector<uint8_t> machine_code): machine_code(machine_code) {}
std::vector<uint8_t> getMachineCode() override
{
return machine_code;
}
size_t size() override
{
return machine_code.size();
}
bool optimize() override ///< returns true if changed
{
return false;
}
protected:
std::vector<uint8_t> machine_code;
};
class Op_Label: public OpSimple
{
public:
Op_Label(const std::string& name) : OpSimple({}), m_name(name) {}
std::string name(){return m_name;}
private:
std::string m_name;
};
class Op_nop: public OpSimple
{
public:
Op_nop() : OpSimple({ 0x90 }) {}
};
template<typename T>
std::string mangleNameOne(const std::string& s)
{
return s + "_" + typeid(T).name();
}
template<typename T, typename... Targs>
std::string mangleName(const std::string& s)
{
if constexpr (sizeof...(Targs) == 0)
return mangleNameOne<T>(s);
else
return mangleName<Targs...>(s + "_" + typeid(T).name());
}
bool registered { registerOp("nop", [](AsmArgs& args) -> std::shared_ptr<Op>{
return std::make_shared<Op_nop>();
}) };
class Assembler {
std::unordered_map<std::string, size_t> labels; ///< labels with their positions in instruction list
/// 1st Level: Instructions
/// 2nd Level: Alternatives
/// 3rd Level: Bytes of single instruction
std::vector<InstructionCodeList> insn_list;
uint64_t addressFromInstructionIndex(size_t index)
{
// TODO: cache this to prevent repetitive summing
if (index > insn_list.size())
throw std::runtime_error("Index "s + std::to_string(index) + " out of range ("s + std::to_string(insn_list.size()) + ")"s);
uint64_t sum{};
for (size_t i = 0; i < index; i++) {
if (insn_list[i].size() < 1) {
throw std::runtime_error("Insufficient alternatives at index "s + std::to_string(i));
}
sum += static_cast<uint64_t>(insn_list[i][0].machine_code.size());
}
return sum;
}
uint64_t addressFromLabel(std::string label)
{
auto it{ labels.find(label) };
if (it == labels.end())
throw std::runtime_error("Label not found: "s + label);
return addressFromInstructionIndex(it->second);
}
std::unordered_map<AddressType, std::function<void(std::vector<uint8_t>&, const Address&, uint64_t)>> addressInserters{
{AddressType::Relative8, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address)
{
int64_t difference = static_cast<int64_t>(addressFromLabel(target_address.label)) - insn_address;
if (difference < -128 || difference > 127)
throw std::runtime_error("Distance too big");
int8_t diff8 = static_cast<int8_t>(difference);
uint8_t diff_u8 = *reinterpret_cast<uint8_t*>(&diff8);
machine_code[target_address.position] = diff_u8;
}
},
{AddressType::Relative16, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) { throw std::runtime_error("Relative16 Address not yet supported."); }},
{AddressType::Relative32, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address)
{
int64_t difference = static_cast<int64_t>(addressFromLabel(target_address.label)) - insn_address;
if (difference < -4294967296 || difference > 4294967295)
throw std::runtime_error("Distance too big");
int32_t diff32 = static_cast<int32_t>(difference);
uint32_t diff_u32 = *reinterpret_cast<uint32_t*>(&diff32);
machine_code[target_address.position] = diff_u32 & 0xFF; // little endian
machine_code[target_address.position + 1] = diff_u32 >> 8 & 0xFF;
machine_code[target_address.position + 2] = diff_u32 >> 16 & 0xFF;
machine_code[target_address.position + 3] = diff_u32 >> 24 & 0xFF;
}
},
{AddressType::Absolute8, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) {throw std::runtime_error("Absolute8 Address not yet supported."); }},
{AddressType::Absolute16, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) {throw std::runtime_error("Absolute16 Address not yet supported."); }},
{AddressType::Absolute32, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) {throw std::runtime_error("Absolute32 Address not yet supported."); }},
};
void produce_machine_code(std::vector<std::vector<Token>>& tl)
{
for (const auto& t : tl) {
// label:
// label: mnemonic arg1, arg2, arg3
// mnemonic arg1, arg2, arg3
if (t.size() == 2 && t[0].type == "label" && t[1].type == ":") { // label
if (labels.find(t[0].value) != labels.end())
throw std::runtime_error("Label already defined: "s + t[0].value);
labels[t[0].value] = insn_list.size();
} else if (t.size() >= 1 && t[0].type == "instruction") { // instruction
std::string instruction{ t[0].value };
auto it = ops_old.find(instruction);
if (it == ops_old.end())
throw std::runtime_error("Unknown instruction: "s + instruction);
InstructionCodeList codes = it->second(t);
if (codes.size() == 0)
throw std::runtime_error("No instruction generated");
insn_list.push_back(codes);
} else
throw std::runtime_error("Syntax error"s);
}
}
void insert_addresses()
{
for (size_t i = 0; i < insn_list.size(); i++) {
InstructionCodeList& list{ insn_list[i] };
if (list.size() == 0)
throw std::runtime_error("No instruction at index "s + std::to_string(i));
InstructionCode& code{ list[0] };
for (const auto& address : code.addresses) {
addressInserters[address.type](code.machine_code, address, addressFromInstructionIndex(i));
}
}
}
void optimize()
{
// reduce Jump sizes via alternatives if possible
bool changed{};
do {
changed = false;
for (size_t i = 0; i < insn_list.size(); i++) {
InstructionCodeList& list{ insn_list[i] }; // Alternatives
// apply specific heuristics to optimization case
if (list.size() == 2) {
if (list[0].addresses.size() == 1 && list[1].addresses.size() == 1) {
if (list[0].addresses[0].type == AddressType::Relative32 && list[1].addresses[0].type == AddressType::Relative8) {
if (IsSmallAddress(list[0])) {
list.pop_front();
break; // start over from start of program
}
}
}
}
}
if (changed)
insert_addresses(); // update
} while (changed);
}
std::vector<uint8_t> collect_code()
{
std::vector<uint8_t> result;
// collect generated machine instructions for result
// Alternatives already resolved, if configured. Consider only 1st entry (no matter if optimized or not).
for (size_t i = 0; i < insn_list.size(); i++) {
InstructionCodeList& list{ insn_list[i] };
if (list.size() == 0)
throw std::runtime_error("No instruction at index "s + std::to_string(i));
InstructionCode& code{ list[0] };
result.insert(result.end(), code.machine_code.begin(), code.machine_code.end());
}
return result;
}
public:
Assembler() {}
std::vector<uint8_t> assemble(std::vector<std::vector<Token>> tl)
{
labels.clear();
insn_list.clear();
produce_machine_code(tl); // 1st pass
insert_addresses(); // 2nd pass
if (O1) {
optimize(); // 3rd pass
}
return collect_code(); // 4th pass
}
}; // class Assembler
|