summaryrefslogtreecommitdiffhomepage
path: root/intel.cpp
blob: 9f24f1d87a11bbb4e1d462b45258c608f943ecae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// Intel assembly language


// segments: code, stack

#include "minicc.h"

#include <algorithm>
#include <any>
#include <array>
#include <deque>
#include <functional>
#include <stdexcept>
#include <functional>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>

using namespace std::string_literals;
using namespace std::placeholders;

namespace {

 // REX prefix: 0b0100WRXB
 std::vector<uint8_t> REX(std::string s) {
  uint8_t result{0b01000000};
  if (s == "W")
   result |= 0b00001000;
  if (s == "R")
   result |= 0b00000100;
  if (s == "X")
   result |= 0b00000010;
  if (s == "B")
   result |= 0b00000001;

  return { result }; 
 }

 std::vector<uint8_t> imm8(std::string s) {
  long value{ std::stol(s) };
  uint8_t* bin = reinterpret_cast<uint8_t*>(&value);
  return { uint8_t(*bin & 0xFF) };
 }

 std::vector<uint8_t> imm32(std::string s) {
  long value{ std::stol(s) };
  uint32_t* bin = reinterpret_cast<uint32_t*>(&value);
  return {uint8_t(*bin & 0xFF), uint8_t(*bin >> 8 & 0xFF), uint8_t(*bin >> 16 & 0xFF), uint8_t(*bin >> 24 & 0xFF) };
 }

 std::unordered_map<std::string, size_t> IndexOfRegister{
  {"al", 0}, {"ah", 4},
  {"bl", 3}, {"bh", 7},
  {"cl", 1}, {"ch", 5},
  {"dl", 2}, {"dh", 6},

  {"ax", 0}, {"sp", 4},
  {"bx", 3}, {"bp", 7},
  {"cx", 1}, {"si", 5},
  {"dx", 2}, {"di", 6},

  {"eax", 0}, {"esp", 4},
  {"ebx", 3}, {"ebp", 7},
  {"ecx", 1}, {"esi", 5},
  {"edx", 2}, {"edi", 6},
 };

 // Manual, page 530
 // Reg + Reg/Memory
 uint8_t ModRM(std::string reg, std::string rm) {
  // TODO: extend
  uint8_t result{0b11000000};

  auto index1{ IndexOfRegister.find(reg) };
  if (index1 == IndexOfRegister.end())
   throw std::runtime_error("Unknown register for arg1: "s + reg);

  result |= (index1->second << 3);

  auto index2{ IndexOfRegister.find(rm) };
  if (index2 == IndexOfRegister.end())
   throw std::runtime_error("Unknown register for arg2: "s + rm);

  result |= index2->second;

  return result;
 }

 enum class AddressType {
  Relative8,
  Relative16,
  Relative32,
  Absolute8,
  Absolute16,
  Absolute32,
 };

 struct Address
 {
  AddressType type;
  size_t position; // relative to respective machine code, e.g. byte 1 in jump
  std::string label; // where to jump to, as label
 };

 struct InstructionCode
 {
  std::vector<uint8_t> machine_code;
  std::vector<Address> addresses;
 };

 // List of alternative codes
 typedef std::deque<InstructionCode> InstructionCodeList;

 bool O1{ true }; // Optimization

 using OP_T = std::vector<uint8_t>;

 InstructionCodeList op_jmp(const std::vector<Token>& sl, std::vector<uint8_t> op_bytes_8, std::vector<uint8_t> op_bytes_32)
 {
  if (sl.size() == 2) { // JMP rel8 / rel32
   const std::string& label{ sl[1].value };
   InstructionCodeList result;
   if (op_bytes_32.size() > 0) {
    op_bytes_32.resize(op_bytes_32.size() + 4, 0x00);
    result.push_back({ op_bytes_32, { {AddressType::Relative32, op_bytes_32.size() - 4, label} } } );
   }
   if (op_bytes_8.size() > 0 && (O1 || op_bytes_32.size() == 0)) {
    op_bytes_8.push_back(0x00);
    result.push_back({ op_bytes_8, { {AddressType::Relative8, op_bytes_8.size() - 1, label} } });
   }
   return result;
  }

  // ... TODO
  throw std::runtime_error("Unknown command: "s + sl[0].value);
 }

 std::unordered_map<std::string, std::function<InstructionCodeList(const std::vector<Token>&)>> ops_old{

  // Integer Addition
  {"add", [](const std::vector<Token>& sl) -> InstructionCodeList {
   if (sl.size() == 3) {
    if (sl[1].value == "eax") { // ADD EAX, imm32
     return { { std::vector<uint8_t>{ 0x05 } +imm32(sl[2].value), {} } };
    } else if (sl[1].value == "rax") { // ADD RAX, imm32
     return { { REX("W") + std::vector<uint8_t>{ 0x05 } +imm32(sl[2].value), {} } };
    }
   }

   // ... TODO
   throw std::runtime_error("Unknown command: "s + sl[0].value);
  }},

  // Call Procedure
  {"call",  std::bind(op_jmp, _1, OP_T{}, OP_T{ 0xE8 })},


  // Unconditional Jump
  {"jmp", std::bind(op_jmp, _1, OP_T{ 0xEB }, OP_T{ 0xE9 })},

  // Conditional Jumps
  {"ja",     std::bind(op_jmp, _1, OP_T{ 0x77 }, OP_T{ 0x0F, 0x87 })},
  {"jae",    std::bind(op_jmp, _1, OP_T{ 0x73 }, OP_T{ 0x0F, 0x83 })},
  {"jb",     std::bind(op_jmp, _1, OP_T{ 0x72 }, OP_T{ 0x0F, 0x82 })},
  {"jbe",    std::bind(op_jmp, _1, OP_T{ 0x76 }, OP_T{ 0x0F, 0x86 })},
  {"jc",     std::bind(op_jmp, _1, OP_T{ 0x72 }, OP_T{ 0x0F, 0x82 })},
  {"jecxz",  std::bind(op_jmp, _1, OP_T{ 0xE3 }, OP_T{})},
  {"jrcxz",  std::bind(op_jmp, _1, OP_T{ 0xE3 }, OP_T{})},
  {"je",     std::bind(op_jmp, _1, OP_T{ 0x74 }, OP_T{ 0x0F, 0x84 })},
  {"jg",     std::bind(op_jmp, _1, OP_T{ 0x7F }, OP_T{ 0x0F, 0x8F })},
  {"jge",    std::bind(op_jmp, _1, OP_T{ 0x7D }, OP_T{ 0x0F, 0x8D })},
  {"jl",     std::bind(op_jmp, _1, OP_T{ 0x7C }, OP_T{ 0x0F, 0x8C })},
  {"jle",    std::bind(op_jmp, _1, OP_T{ 0x7E }, OP_T{ 0x0F, 0x8E })},
  {"jna",    std::bind(op_jmp, _1, OP_T{ 0x76 }, OP_T{ 0x0F, 0x86 })},
  {"jnae",   std::bind(op_jmp, _1, OP_T{ 0x72 }, OP_T{ 0x0F, 0x82 })},
  {"jnb",    std::bind(op_jmp, _1, OP_T{ 0x73 }, OP_T{ 0x0F, 0x83 })},
  {"jnbe",   std::bind(op_jmp, _1, OP_T{ 0x77 }, OP_T{ 0x0F, 0x87 })},
  {"jnc",    std::bind(op_jmp, _1, OP_T{ 0x73 }, OP_T{ 0x0F, 0x83 })},
  {"jne",    std::bind(op_jmp, _1, OP_T{ 0x75 }, OP_T{ 0x0F, 0x85 })},
  {"jng",    std::bind(op_jmp, _1, OP_T{ 0x7E }, OP_T{ 0x0F, 0x8E })},
  {"jnge",   std::bind(op_jmp, _1, OP_T{ 0x7C }, OP_T{ 0x0F, 0x8C })},
  {"jnl",    std::bind(op_jmp, _1, OP_T{ 0x7D }, OP_T{ 0x0F, 0x8D })},
  {"jnle",   std::bind(op_jmp, _1, OP_T{ 0x7F }, OP_T{ 0x0F, 0x8F })},
  {"jno",    std::bind(op_jmp, _1, OP_T{ 0x71 }, OP_T{ 0x0F, 0x81 })},
  {"jnp",    std::bind(op_jmp, _1, OP_T{ 0x7B }, OP_T{ 0x0F, 0x8B })},
  {"jns",    std::bind(op_jmp, _1, OP_T{ 0x79 }, OP_T{ 0x0F, 0x89 })},
  {"jnz",    std::bind(op_jmp, _1, OP_T{ 0x75 }, OP_T{ 0x0F, 0x85 })},
  {"jo",     std::bind(op_jmp, _1, OP_T{ 0x70 }, OP_T{ 0x0F, 0x80 })},
  {"jp",     std::bind(op_jmp, _1, OP_T{ 0x7A }, OP_T{ 0x0F, 0x8A })},
  {"jpe",    std::bind(op_jmp, _1, OP_T{ 0x7A }, OP_T{ 0x0F, 0x8A })},
  {"jpo",    std::bind(op_jmp, _1, OP_T{ 0x7B }, OP_T{ 0x0F, 0x8B })},
  {"js",     std::bind(op_jmp, _1, OP_T{ 0x78 }, OP_T{ 0x0F, 0x88 })},
  {"jz",     std::bind(op_jmp, _1, OP_T{ 0x74 }, OP_T{ 0x0F, 0x84 })},

  // Memory Move
  { "mov", [](const std::vector<Token>& sl) -> InstructionCodeList {
   if (sl.size() == 3) {
    return { { std::vector<uint8_t>{ 0x88 } + ModRM(sl[2].value, sl[1].value), {} } };  // r/m8, r8: ModRM:r/m (w), ModRM:reg (r)
   }

   // ... TODO
   throw std::runtime_error("Unknown command: "s + sl[0].value);
  }},

  { "xor", [](const std::vector<Token>& sl) -> InstructionCodeList {
   if (sl.size() == 3) {
    return { { std::vector<uint8_t>{ 0x33 } + ModRM(sl[1].value, sl[2].value) } };  // r8, r/m8: ModRM:reg (w), ModRM:r/m (r)
   }

   // ... TODO
   throw std::runtime_error("Unknown command: "s + sl[0].value);
  }},

 };

#if 0
 prefixes{
  "lock", 0xf0,

  // branch hint
  0x2e, "branch not taken"
  0x3e, "branch taken"

  0x66, "operand size override" // switch between 16 and 32 bit operands
  0x67, "address size override" // switch between 16 and 32 bit addresses
 };
 };
#endif

#ifdef ASM_PARSER
 BNF GetBNF() {
  // TODO:
  return {
   { "assembler-unit", {
    {}
   }},
   { "immediate-32", {
    {}
   }},
   { "mnemonic", {
    {}
   }},
   { "register", {
    {}
   }},
   { "register-8", {
    {}
   }},
   { "register-16", {
    {}
   }},
   { "register-32", {
    {}
   }},
   { "register-64", {
    {}
   }},
 
  };
 };
#endif
 
 // Checks a 32 bit relative address if it's valid as 8 bit address
 bool IsSmallAddress(const InstructionCode& insn) {
  if (insn.addresses.size() != 1)
   throw std::runtime_error("Bad number of addresses in insn");

  size_t i{insn.addresses[0].position};

  if (i > insn.machine_code.size() - 3)
   throw std::runtime_error("Bad Address index "s + std::to_string(i) + " in insn with "s + std::to_string(insn.machine_code.size()) + " bytes"s);

  if (std::count(insn.machine_code.begin() + i, insn.machine_code.begin() + i + 3, 0x00) == 3 ||
   std::count(insn.machine_code.begin() + i, insn.machine_code.begin() + i + 3, 0xFF) == 3)
   return true;

  return false;
 }


} // namespace

class Assembler {

 std::unordered_map<std::string, size_t> labels; ///< labels with their positions in instruction list

 /// 1st Level: Instructions
 /// 2nd Level: Alternatives
 /// 3rd Level: Bytes of single instruction
 std::vector<InstructionCodeList> insn_list;

 uint64_t addressFromInstructionIndex(size_t index)
 {
  // TODO: cache this to prevent repetitive summing

  if (index > insn_list.size())
   throw std::runtime_error("Index "s + std::to_string(index) + " out of range ("s + std::to_string(insn_list.size()) + ")"s);

  uint64_t sum{};

  for (size_t i = 0; i < index; i++) {
   if (insn_list[i].size() < 1) {
    throw std::runtime_error("Insufficient alternatives at index "s + std::to_string(i));
   }

   sum += static_cast<uint64_t>(insn_list[i][0].machine_code.size());
  }

  return sum;
 }

 uint64_t addressFromLabel(std::string label)
 {
  auto it{ labels.find(label) };
  if (it == labels.end())
   throw std::runtime_error("Label not found: "s + label);

  return addressFromInstructionIndex(it->second);
 }

 std::unordered_map<AddressType, std::function<void(std::vector<uint8_t>&, const Address&, uint64_t)>> addressInserters{
  {AddressType::Relative8,  [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address)
   {
    int64_t difference = static_cast<int64_t>(addressFromLabel(target_address.label)) - insn_address;
    if (difference < -128 || difference > 127)
     throw std::runtime_error("Distance too big");

    int8_t diff8 = static_cast<int8_t>(difference);
    uint8_t diff_u8 = *reinterpret_cast<uint8_t*>(&diff8);

    machine_code[target_address.position] = diff_u8;
   }
  },
  {AddressType::Relative16, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) { throw std::runtime_error("Relative16 Address not yet supported."); }},
  {AddressType::Relative32, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address)
   {
    int64_t difference = static_cast<int64_t>(addressFromLabel(target_address.label)) - insn_address;
    if (difference < -4294967296 || difference > 4294967295)
     throw std::runtime_error("Distance too big");

    int32_t diff32 = static_cast<int32_t>(difference);
    uint32_t diff_u32 = *reinterpret_cast<uint32_t*>(&diff32);

    machine_code[target_address.position] = diff_u32 & 0xFF; // little endian
    machine_code[target_address.position + 1] = diff_u32 >> 8 & 0xFF;
    machine_code[target_address.position + 2] = diff_u32 >> 16 & 0xFF;
    machine_code[target_address.position + 3] = diff_u32 >> 24 & 0xFF;
   }
  },
  {AddressType::Absolute8,  [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) {throw std::runtime_error("Absolute8 Address not yet supported."); }},
  {AddressType::Absolute16, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) {throw std::runtime_error("Absolute16 Address not yet supported."); }},
  {AddressType::Absolute32, [&](std::vector<uint8_t>& machine_code, const Address& target_address, uint64_t insn_address) {throw std::runtime_error("Absolute32 Address not yet supported."); }},
 };

 void produce_machine_code(std::vector<std::vector<Token>>& tl)
 {
  for (const auto& t : tl) {
   // label:
   // label: mnemonic arg1, arg2, arg3
   //        mnemonic arg1, arg2, arg3

   if (t.size() == 2 && t[0].type == "label" && t[1].type == ":") { // label
    if (labels.find(t[0].value) != labels.end())
     throw std::runtime_error("Label already defined: "s + t[0].value);

    labels[t[0].value] = insn_list.size();
   } else if (t.size() >= 1 && t[0].type == "instruction") { // instruction
    std::string instruction{ t[0].value };
    auto it = ops_old.find(instruction);
    if (it == ops_old.end())
     throw std::runtime_error("Unknown instruction: "s + instruction);

    InstructionCodeList codes = it->second(t);

    if (codes.size() == 0)
     throw std::runtime_error("No instruction generated");

    insn_list.push_back(codes);

   } else
    throw std::runtime_error("Syntax error"s);
  }
 }

 void insert_addresses()
 {
  for (size_t i = 0; i < insn_list.size(); i++) {
   InstructionCodeList& list{ insn_list[i] };
   if (list.size() == 0)
    throw std::runtime_error("No instruction at index "s + std::to_string(i));

   InstructionCode& code{ list[0] };

   for (const auto& address : code.addresses) {
    addressInserters[address.type](code.machine_code, address, addressFromInstructionIndex(i));
   }
  }
 }

 void optimize()
 {
  // reduce Jump sizes via alternatives if possible
  bool changed{};
  do {
   changed = false;

   for (size_t i = 0; i < insn_list.size(); i++) {
    InstructionCodeList& list{ insn_list[i] }; // Alternatives

    // apply specific heuristics to optimization case
    if (list.size() == 2) {
     if (list[0].addresses.size() == 1 && list[1].addresses.size() == 1) {
      if (list[0].addresses[0].type == AddressType::Relative32 && list[1].addresses[0].type == AddressType::Relative8) {
       if (IsSmallAddress(list[0])) {
        list.pop_front();
        break; // start over from start of program
       }
      }
     }
    }
   }

   if (changed)
    insert_addresses(); // update

  } while (changed);
 }

 std::vector<uint8_t> collect_code()
 {
  std::vector<uint8_t> result;

  // collect generated machine instructions for result
  // Alternatives already resolved, if configured. Consider only 1st entry (no matter if optimized or not).
  for (size_t i = 0; i < insn_list.size(); i++) {
   InstructionCodeList& list{ insn_list[i] };
   if (list.size() == 0)
    throw std::runtime_error("No instruction at index "s + std::to_string(i));

   InstructionCode& code{ list[0] };

   result.insert(result.end(), code.machine_code.begin(), code.machine_code.end());
  }

  return result;
 }

public:
 Assembler() {}

 std::vector<uint8_t> assemble(std::vector<std::vector<Token>> tl)
 {
  labels.clear();
  insn_list.clear();

  produce_machine_code(tl); // 1st pass
  insert_addresses(); // 2nd pass
  if (O1) {
   optimize(); // 3rd pass
  }

  return collect_code(); // 4th pass
 }

}; // class Assembler