1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
#include "lexer.h"
using namespace Lex;
size_t Lexer::newState(std::string state_type)
{
m_state_types.push_back(state_type);
return states++;
}
void Lexer::addTransition(size_t state0, size_t state1, char c)
{
auto it{transitions.find(state0)};
if (it == transitions.end()) { // new entry is a list with 1 entry
transitions[state0] = {{state1, c}};
} else { // extend list entry
it->second.push_back({state1, c});
}
}
std::vector<std::pair<size_t, char>> Lexer::getSuccessors(size_t state)
{
std::vector<std::pair<size_t, char>> result;
auto it{transitions.find(state)};
if (it != transitions.end()) { // new list entry
for (auto &i: it->second) {
if (i.first == m_endState || i.second != '\0') { // add transition to end state or transition via actual char
result.push_back(i);
} else { // follow empty transition
auto successors { getSuccessors(i.first) };
result.insert(result.end(), successors.begin(), successors.end());
}
}
}
return result;
}
// Helper function
void Lexer::addPathOrTransition(size_t state0, size_t state1, std::string symbol, std::string type)
{
if (isTerminal(m_bnf, symbol)) { // end recursion with new transition
if (symbol.size() != 1)
throw std::runtime_error("Bad sized terminal symbol: "s + symbol);
addTransition(state0, state1, symbol[0]);
} else { // recurse via non-terminal symbol
addPath(state0, state1, symbol, type);
}
}
// Helper function: add one rule
void Lexer::addRule(const std::vector<std::string>& list, size_t list_index_from, size_t list_index_to, size_t state0, size_t state1, const std::string& rule_symbol, std::string type)
{
size_t previousState{state0};
// add intermediate states with transitions
for (size_t i = list_index_from; i < list_index_to - 1; i++) {
std::string symbol{list[i]};
if (symbol == rule_symbol)
throw std::runtime_error("Recursion found but not allowed");
size_t state{newState(type)};
addPathOrTransition(previousState, state, symbol, type);
previousState = state;
}
if (list.back() == rule_symbol)
throw std::runtime_error("Recursion found but not allowed");
// last transition
addPathOrTransition(previousState, state1, list.back(), type);
}
// Add paths between state0 and state1, including new states and transitions
void Lexer::addPath(size_t state0, size_t state1, std::string s, std::string type)
{
if (type == "" && s != "" && s != m_top)
type = s;
// state0 -> [paths] -> state01 -> state1
// ^ v
// [recursion paths]
size_t state01{newState(type)};
auto it {m_bnf.find(s)};
if (it == m_bnf.end())
throw std::runtime_error("Path ("s + std::to_string(state0) + ", "s + std::to_string(state1) + ") not possible."s);
for (auto& list: it->second) { // for every path between state0 and state1
size_t list_size{list.size()};
if (list_size < 1)
throw std::runtime_error("List too small in rule "s + s);
if (list[0] == s) { // recursion rule
addRule(list, 1, list_size, state01, state01, s, type);
} else { // non-recursion rule
addRule(list, 0, list_size, state0, state01, s, type);
}
}
addTransition(state01, state1, 0); // empty transition to end
}
Lexer::Lexer(const BNF& bnf, const std::string& top): m_bnf(bnf), m_top(top)
, m_startState(newState()), m_endState(newState())
{
addPath(m_startState, m_endState, m_top, "");
}
Token Lexer::getToken(const std::string& s, Location& location)
{
Location oldLocation{location}; // start of token
std::vector<size_t> states{m_startState}; // can be in multiple states at once
std::vector<size_t> newStates;
Location found;
std::string state_type;
// match as much as possible
while (location.pos < s.size() && states.size() > 0) {
char currentChar{s[location.pos]};
std::cout << "DEBUG: Char: " << currentChar << std::endl;
for (const auto& state: states) {
std::vector<std::pair<size_t, char>> successors{getSuccessors(state)};
for (const auto& [nextState, c]: successors) {
if (c == currentChar) {
newStates.push_back(nextState);
if (nextState == m_endState) { // save intermediate result upon match
found = location;
found.advance();
state_type = m_state_types[state];
}
} else if (nextState == m_endState) { // save intermediate result w/o match of c
found = location;
state_type = m_state_types[state];
}
}
}
states = newStates;
newStates.clear();
location.advance(currentChar == '\n');
}
std::string value {s.substr(oldLocation.pos, found.pos - oldLocation.pos)};
if (found.pos > 0)
std::cout << "DEBUG: Matched " << found.pos - oldLocation.pos << " chars: " << value << "|" << state_type << std::endl;
else
throw std::runtime_error("Tokenize error at "s + oldLocation.toString());
location = found; // reset to end of match
return {state_type, value, oldLocation};
}
void Lexer::skipWhitespace(const std::string& s, Location& location)
{
while (location.pos < s.size() && std::isspace(s[location.pos])) {
location.advance(s[location.pos] == '\n');
}
}
std::vector<Token> Lexer::Lex(const std::string& s)
{
std::vector<Token> result;
Location location;
skipWhitespace(s, location);
while (location.pos < s.size()) {
result.emplace_back(getToken(s, location));
skipWhitespace(s, location);
}
return result;
}
|